Lecture 1: Introduction
to Program Analysis

17-355/17-655/17-819: Program Analysis
Claire Le Goues
January 14, 2020

* Course materials developed with Jonathan Aldrich

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Learning objectives

* Provide a high level definition of program analysis and give
examples of why it is useful.

« Sketch the explanation for why all analyses must approximate.

 Understand the course mechanics, and be motivated to read the
syllabus.

« Describe the function of an AST and outline the principles
behind AST walkers for simple bug-finding analyses.

« Recognize the basic WHILE demonstration language and
translate between WHILE and While3Addr.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

What is this course about?

« Program analysis is the systematic examination of a program to
determine its properties.

« From 30,000 feet, this requires:

o Precise program representations
o Tractable, systematic ways to reason over those representations.

« We will learn:
o How to unambiguously define the meaning of a program, and a
programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Why might you care?

« Program analysis, and the skills that underlie it, have
implications for:

Automatic bug finding.

Language design and implementation.

Program synthesis.

O
O
O
o Program transformation (refactoring, optimization, repair).

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

- public void| foo() {
int a = computeSomething();

if (a == "5")
doMoreStuff();

institute for Carnegie Mellon University
SOFTWARE .
School of Computer Science

RESEARCH

(= pUbliC int foo() {

i doStuff();

i return 3;

S return 4;

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

&« Cc & github.com/marketplace?category=code-quality

Pull requests Issues Marketplace Explore

Marketplace =~ Search results

https://github.com/marketplace?category=code-quality

Types Q

Apps .
Code quality

Actions
Automate your code review with style, quality, security, and test-coverage checks when you need them.
245 results filtered by Code quality x

Categories

API management
Chat

Code quality

I

Code review

Continuous integration

cs

CodeScene &

The analysis tool to identify and prioritize
technical debt and evaluate your
organizational efficiency

CodeFactor &
Automated code review for GitHub

o

TestQuality &
Modern, powerful, test plan management

Restyled.io &
Restyle Pull Requests as they're opened

DeepScan & LGTM &
Dependency management ! :) h
Advanced static analysis for automatically Find and prevent zero-days and other
Depl finding runtime errors in JavaScript code critical bugs, with customizable alerts and
eployment automated code review
IDEs .
Datree & Lucidchart Connector &
Learning Policy enforcement solution for confident Insert a public link to a Lucidchart diagram
and compliant code so team members can quickly understand
Localization an issue or pull request
Mobile DeepSource & « Code Inspector &
o Discover bug risks, anti-patterns and c I Code Quality, Code Reviews and Technical
Monitoring security vulnerabilities before they end up Debt evaluation made easy

Project management
Publishing

Recently added

c©000 v @0 -

in production. For Python and Go

Codecov &
Group, merge and compare coverage
reports

codebeat &
Code review expert on demand.
Automated for mobile and web

Security Codacy & Better Code Hub &
Automated code reviews to help £ia A Benchmarked Definition of Done for
Support developers ship better software, faster Code Quality
Testing Code Climate & Coveralls &
Utilit Automated code review for technical debt * Ensure that new code is fully covered, and
tilities and test coverage see coverage trends emerge. Works with
any Cl service
Filters v Sider & Imgbot &
Automatically analyze pull request against A GitHub app that optimizes your images
custom per-project rulesets and best
. ps s ractices
Verification P
B codelingo Check TODO
Verified Your Code, Your Rules - Automate code Checks for any added or modified TODO
reviews with your own best practices items in a Pull Request
Unverified

Your items ~

Purchases

Also recommended for you

https://github.com/marketplace?category=api-management

Next

(c) 2020 C. Le Goues

https://github.com/marketplace%3Fcategory=code-quality

package com.google.devtools.staticanalysis;

public class Test {

~ Lint Missing a Javadoc comment.
Ja
1:&;AUJ.AUQ21
Please fix Not useful
public boolean foo() {
return getString() == "foo".toString():;
~ ErrorProne String comparison using reference equality instead of value equality
StringEquality (see hitp://code. e.com/p/error-prone/wiki/StringEquality)
1:03 AM, Aug 21
Please fix
Suggested fix attached: show Not useful

}

public String getString() {
return new String(“"foo");

}

}

lIdepot/googled/javaicomigoogie/devtools/staticanalysis/ | est.java

package com.gcogle.devtocls.staticanalysis; package com.gocgle.devtocls.staticanalysis;

import java.util.Objects;

public class Test {
public boolean foo() {
return getString() == "foo".toString():

}

public class Test {
public boolean foo() {
return Objects.equals(getString(), "foo".toString()):;
}

public String getString() {
return new String("foco");
} }

} }

m Cancel (c) 2020 C. Le Goues

public String getString() {
return new String("fco");

facebook Engineering

Open Source Platforms Infrastructure Systems Physical Infrastructure Video Engineerin,

POSTED ON MAY 2, 2018 TO DEVELOPER TOOLS, OPEN SOURCE

Sapienz: Intelligent automated software testing at
scale

sapienz

2\ N v
By Ke M ' |) |
y Ke Mao l_f_/l I\;-./,I [\X
Sapienz technology leverages automated test design to
make the testing process faster, more comprehensive, and

more effective.

(c) 2020 C. Le Goues

facebook Engineering

Open Source Platforms Infrastructure Systems Physical Infrastructure Video Engineering & AR/VR

POSTED ON SEP 13, 2018 TO Al RESEARCH, DEVELOPER TOOLS, OPEN SOURCE, PRODUCTION ENGINEERING

Finding and fixing software bugs automatically with
SapFix and Sapienz

®

Workflow (Generation)

’ o ‘ - Q

Saplenz Trigger Patch Fix Patch
Auto Triage Generator Generator

| ' | |

Revert Revert
Full Diff Partial Diff

{_/'_f\l (/;\] (?\1

By YueJia KeMao Mark Harman) \ /
N S

Debugging code is drudgery. But SapFix, a new Al hybrid tool created by Facebook
engineers, can significantly reduce the amount of time engineers spend on debugging,
while also speeding up the process of rolling out new software. SapFix can automatically
generate fixes for specific bugs, and then propose them to engineers for approval and
deployment to production.

SapFix has been used to accelerate the process of shipping robust, stable code updates to
millions of devices using the Facebook Android app — the first such use of Al-powered
testing and debugging tools in production at this scale. We intend to share SapFix with
the engineering community, as it is the next step in the evolution of automating
debugging, with the potential to boost the production and stability of new code for a
wide range of companies and research organizations.

SapFix is designed to operate as an independent tool, able to run either with or without
Sapienz, Facebook’s intelligent automated software testing tool, which was announced at 9
F8 and has already been deployed to production. In its current, proof-of-concept state,

IS THERE A BUG IN THIS CODE?

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4. int b size) {

. struct buffer head *bh;

5
6. unsigned long flags;
7. save flags(flags);

8

. «c¢li(); // disables interrupts

9. 1if ((bh = sh->buffer pqgg == NULL)

10. return NULL;
11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables

14. return bh;
15.}

ERROR: function returns with

interrupts disabled!

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

(c) 2020 C. Le Goues

11

0 N o Uk W N

I e R e e e T e S~ W R Vo)
© 0 N O L W N L O
o o o o o o o

. sm check interrupts ({

// variables; used in patterns

. decl { unsigned } flags;

// patterns specify enable/disable functions

. pat enable = { sti() ; }

| { restore flags(flags); } ;

. pat disable = { cli() ; }

//states; first state is initial

. is enabled : disable = is disabled

| enable = { err(“double enable”); }

L]
b 4

is disabled : enable = is enabled

| disable = { err(“double disable”); }

.//special pattern that matches when

.// end of path is reached in this state

| Send of patEhe$an§rom Engler et al., Checking system rules Using
- System-Specific, Programmer-Written Compiler

{ err ("exxttsng, GFAHRO inter disabled!”);

}

enable =» err(double enable)

is_disabled

end path =2 err(exiting with inter disabled)

(c) 2020 C. Le Goues

12

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags);

8. «cli(); // disables interrupts

9. 1if ((bh = sh->buffer pool) == NULL)
10. return NULL;

11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables

14. return bh;
15.}

Initial state: is_enabled

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

(c) 2020 C. Le Goues

13

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4.

0 J O U

10.
11.
12.
13.
14.
15.

int b size) {
struct buffer head *bh;

unsigned long flags; Transition to: is_disabled

save flags(flags);

cli(); // disables interrupts

if ((bh = sh->buffer pool) == NULL)
return NULL;

sh->buffer pool = bh -> b next;

bh->b size = b size;

restore flags(flags); // re-enables interrupts

. Example from Engler et al., Checking system rules Using
return bh r System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

(c) 2020 C. Le Goues

14

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags; Final state: is_disabled
7. save flags(flags);

8. «cli(); // disables interrupts

9. 1if ((bh = sh->buffer pog
10. return NULL;
11. sh->buffer pool = bh -> b next;
12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts

Example from Engler et al., Checking system rules Usin
14. return bh; pie from Ene g system g

System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

15.}

(c) 2020 C. Le Goues

15

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4.

0 J O U

10.
11.
12.
13.
14.
15.

int b size) {
struct buffer head *bhj;
unsigned long flags;
save flags(flags); Transition to: is_enabled

cli(); // disables interrupts

if ((bh = sh->buffer pool) == NULL)
return NULL;

sh->buffer pool = bh -> b ng¢;

bh->b size = b size;

restore flags(flags); // re-enables interrupts
. Example from Engler et al., Checking system rules Using
return bh r System-Specific, Programmer-Written Compiler

Extensions, OSDI ‘000

(c) 2020 C. Le Goues

16

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4.,

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.}

int b size) {
struct buffer head *bh;
unsigned long flags;
save flags(flags);

cli(); // disables interrupts

Final state: is_enabled

if ((bh = sh->buffer pool) == NULL)
return NULL;

sh->buffer pool = bh -> b ne3

bh->b size = b size;

restore flags(flefs); // re-enables interrupts

. Example from Engler et al., Checking system rules Using
return bh r System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

(c) 2020 C. Le Goues

17

Behavior of interest...

* |s on uncommon execution paths.
o Hard to exercise when testing.

- Executing (or analyzing) all paths is infeasible

 Instead: (abstractly) check the entire possible state space of
the program.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

What is this course about?

* Program analysis is the systematic examination of a program to
determine its properties.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Proof by contradiction (sketch)

Assume that you have a function that can determine if a program p has
some nontrivial property (like divides by zero):

int silly(program p, input 1) {
P(1);
return 5/0;

}

bool halts(program p, input i) {
return divides by zero(silly(p,1));

}

\]O\U'llhwwl—‘

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Error Reported True positive False positive
(correct analysis result)

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Sound Analysis

. Y . . .
institute for Carnegie Mellon University

SOFTWARE .
RESEARCH ‘ School of Computer Science

In Defense of Soundiness: A Manifesto

Ben Livshits, Manu Sridharan, Yannis Smaragdakis, Ondfej Lhotdk, J. Nelson Amaral, Bor-Yuh
Evan Chang, Sam Guyer, Uday Khedker, Anders Mgller, and Dimitrios Vardoulakis

Microsoft Research, Samsung Research America, University of Athens, University of Waterloo, University of Alberta,
University of Colorado Boulder, Tufts University, IT Bombay, Aarhus University, Google

Static program analysis is a key component of many software development tools, including compilers, development
environments, and verification tools. Practical applications of static analysis have grown in recent years to include tools by
companies such as Coverity, Fortify, GrammaTech, |1BM, and others. Analyses are often expected to be soundin that ther result
models all possible executions of the program under analysis. Soundness implies that the analysis computes an over-
approximation in order 1o stay tractable; the analysis result will also model behaviors that do not actually occur in any program
execution. The predsion of an analysis is the degree to which it avoid s such spurious results. Users expect analyses to be sound
as amatter of urse, and desire analyses 1o be a3 precise as possible, while being able to scale to large programs,

Soundness would seem essential for any kind of static program analysis. Soundness is also widely emphasized in the academic
Mterature. Yet, in practice, soundness is commonly eschewed: we are not aware of a single realistic whole-program' analysis tool
{e.g., tools widely used for bug detection, refactoring assistance, programming automation, etc.) that does not purposely make
umsound choices. Similarly, virtually all published whole-program analyses are unsound and omit conservative handling of
common language features when applied to real programming language s

The typical reasons for such chokes are engineering compromises: implementers of such tools are well aware of how they wuld
handle complex language features soundly (e.g., by assuming that a complex language feature can exhibit any behavior | but do
not do so because this woukd make the analysis unsaloble or imprecise to the point of being useless. Therefore, the dominant
practice is one of treating soundness as an engineer ing choke,

In all, we are faced with a paradox: on the one hand we have the ubiquity of unsoundness in any practical whole-program analysis
tool that has a claim to precision and scalability; on the other, we have a research community that, outside a small group of
experts, is oblivious to any unsoundness, let alone its preponderance in practice.

Our cbservation is that the paradox can be reconciled. The state of the art in realistic analyses exhibits consistent traits, while
also integrating a sharp discontinuity. On the one hand, typical realistic analysis implementations have a sound @ve: most
common language features are over-approximated, modeling all their possible behaviors, Every time there are multiple options
{e.g., tranches of a conditional statement, multiple data flows) the analysis models all of them. On the other hand, some specific
language features, well known to experts in the area, are best under-appraximated. Eflectively, every analysis pretends that
perfectly possible behaviors cannot happen. For instance, it is comventional for an otherwise sound static analysis to treat highly-
dynamic language constructs, such as Java reflection or eval in JavaScript, under-appraximately. A practical analysis, therefore,
may pretend that eval does nothing, unless it can precisely resalve its string argument at compile time.,

We introduce the term soundy for such analyses. The concept of soundiness attempts to capture the balance, prevalent in
practice, of over-approximated handling of most language features, yet deliber ately under-approximated handling of a feature
subset well recognized by experts. Soundiness is in fact what s meant in many papers that ¢laim to describe asound analysis, A
soundy analysis akms to be as sound as possible without excessively compromising precision and for scalability.

Our message here is threefold:

1. We bring forward the ublquity of, and engineering need for, unsoundness in the static program analysis practice. For static
analysis researchers, this may come as nosurprise. For the rest of the community, which expects to use analyses as a black

box, this unsoundness s less understood.
https://yanniss.github.io/Soundiness-CACM.pdf

FWe draw 2 dstinction betwee n whole program analys es, wihich need 1o model shame d data, such as the heap, and modular anabses e g, e
systems. Althoughths space is acontnuum, he dstnction is typecaly well understood.

1 (c) 2020 C. Le Goues

https://yanniss.github.io/Soundiness-CACM.pdf

What is this course about?

* Program analysis is the systematic examination of a program to
determine its properties.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

What is this course about?

* Program analysis is the systematic examination of a program to
determine its properties.

 Principal techniques:
o Dynamic:
= Testing: Direct execution of code on test data in a controlled environment.
= Analysis: Tools extracting data from test runs.
o Static:

= Analysis: Tools reasoning about the program without executing it.
o ...and their combination.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Course topics

« Program representation

 Abstract interpretation: Use abstraction
to reason about possible program
behavior.

©)

O O O O O

©)

Operational semantics.
Dataflow Analysis
Termination, complexity
Widening, collecting
Interprocedural analysis
Datalog

Control flow analysis

- Hoare-style verification: Make logical
arguments about program behavior.

@)
@)

SOFTWARE
RESEARCH

Axiomatic semantics
Separation logic: modern bug finding.

Symbolic execution: test all possible
executions paths simultaneously.

o Concolic execution

o Test generation

SAT/SMT solvers
Program synthesis
Dynamic analysis
Program repair

Model checking (briefly) : reason
exhaustively about possible program
states.

o Take 15-414 if you want the full treatment!

We will basically not cover types.

institute for ‘ Carnegie Mellon University

School of Computer Science

Fundamental concepts

Abstraction.
o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

The importance of semantics.

o We prove things about analyses with respect to the semantics of the
underlying language.

Program proofs as inductive invariants.

Implementation
o You do not understand analysis until you have written several.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Course mechanics

PAS

When/what.

e Lectures 2x week (T,Th).

o Mostly not using slides (...this first lecture notwithstanding).
o Instead: board, lecture notes, exercises.

o Bring a pen/pencil.

o Try to stay off your devices.

e Recitation 1x week (Fr).
o Lab-like, very helpful for homework.
o Bring your laptops.

« Homework, midterm exams, project.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Communication

« We have a website and a Canvas site, with Piazza enabled.

o Follow the link from the main Canvas page/syllabus to sign up for
Piazza.

 Please:

o Use Piazza to communicate with us as much as possible, unless the
matter is sensitive,

o Make your questions public as much as possible, since that's the literal
point of Piazza.

« We have office hours! Or, by appointment.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

“How do | get an A?”

* 10% in-class participation and exercises

40% homework
o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) released!

30% two (2) midterm exams

o Date of second one depends a bit on guest lecture scheduling; | will post it
ASAP.

20% final project
o There will be some options here.

No final exam; exam slot used for project presentations.
We have late days and a late day policy; read the syllabus.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

CMU can be a pretty intense place.

« A 12-credit course is expected to take ~12 hours a week.

| aim to provide a rigorous but tractable course.
o More frequent assignments rather than big monoliths.
o Two exams reduces the pressure of just a single exam.

« Please keep me apprised of how much time the class is actually
taking and whether it is interfacing badly with other courses.

o | have no way of knowing if you have three midterms in one week.
o Sometimes, we misjudge assignment difficulty.

e Ifit's 2 am and you're panicking...put my homework down, send
me an email, and go to bed.

(c) 2020 C. Le Goues

33

What is this course about?

* Program analysis is the systematic examination of a program to
determine its properties.

« From 30,000 feet, this requires:

o Precise program representations
o Tractable, systematic ways to reason over those representations.

« We will learn:
o How to unambiguously define the meaning of a program, and a
programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Our first representation: Abstract Syntax

« Atree representation of source code based on the language
grammar.

« Concrete syntax: The rules by which programs can be expressed
as strings of characters.

o Use finite automata and context-free grammars, automatic lexer/parser
generators

« Abstract syntax: a subset of the parse tree of the program.

* (The intuition is fine for this course; take compilers if you want to
learn how to parse for real.)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

WHILE abstract syntax

M

Categories: Concrete syntax is
o Se Stmt statements similar, but adds things
o a€ Aexp arithmetic expressions like (parentheses) for
o X yeVar variables disambiguation during
o nE Num number literals parsing
o PeBExp boolean predicates
o | €labels statement addresses (line numbers)
Syntax:
o S ::=x:=a | skip | S; ; S,
| if P then S; else S, | while P do S
o a ::= x | n | a; op, a;
0 opy ::=+ [= | x| /|
o P = true | false | not P | P, op, P, | al op, a2
o op, ::= and | or |
o opy ::=< | = | =]>]z]

SOFTWARE
RESEARCH

institute for ‘

Carnegie Mellon University
School of Computer Science

Example WHILE program

while y > 1 do
Z2 = 2 * y;
Y y — 1

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Exercise: Building an AST

while y > 1 do
Z2 = 2 * y;
Y y — 1

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Exercise: Building an AST for C code

void copy_bytes(char dest[], char sourcel], int n) {
for (inti=0;i<n; ++i)
dest[i] = source[i];

. . . L4
institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Our first static analysis: AST walking

One way to find “bugs” is to walk the AST, looking for particular
patterns.

o Walk the AST, look for nodes of a particular type

o Check the neighborhood of the node for the pattern in question.

Various frameworks, some more language-specific than others.
o Tension between language agnosticism and semantic information available.
o Consider “grep”: very language agnostic, not very smart.

One common architecture based on Visitor pattern:

o class Visitor has a visitX method for each type of AST node X
o Default Visitor code just descends the AST, visiting each node
o Tofind a bugin AST element of type X, override visitX

Other more recent approaches based on semantic search, declarative
logic programming, or query languages.

(c) 2020 C. Le Goues 40

Example: shifting by more than 31 bits.

For each instruction I in the program
if I is a shift instruction
if (type of I's left operand is int
&& I's right operand is a constant
&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

CodeQL queries 1.23
Dashboard / Java queries

Inefficient empty string test

Created by Documentation team, last modified on Mar 28, 2019

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

o

Name: Inefficient empty string test

Description: Checking a string for equality with an empty string is inefficient.
ID: java/inefficient-empty-string-test

Kind: problem

Severity: recommendation

Precision: high

Query: InefficientEmptyStringTest.ql > Expand source

When checking whether a string s is empty, perhaps the most obvious solution is to write something like s.equals("") (or
"".equals(s)). However, this actually carries a fairly significant overhead, because String.equals performs a number of type
tests and conversions before starting to compare the content of the strings.

Recommendation

The preferred way of checking whether a string s is empty is to check if its length is equal to zero. Thus, the condition is s. length()
== 0. The length method is implemented as a simple field access, and so should be noticeably faster than calling equals.

Note that in Java 6 and later, the String class has an isEmpty method that checks whether a string is empty. If the codebase does
not need to support Java 5, it may be better to use that method instead. (c) 2020 C. Le Goues 42

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

O 00 N OVWUV A WIN B

(R
= ®

12
13
14
15
16
17

// Inefficient version
class InefficientDBClient {
public void connect(String user, String pw) {
if (user.equals("") || "".equals(pw))
throw new RuntimeException();

// More efficient version
class EfficientDBClient {
public void connect(String user, String pw) {
if (user.length() == 0 || (pw != null && pw.length() == @))
throw new RuntimeException();

(c) 2020 C. Le Goues

Hint: dout

43

Query: InefficientEmptyStringTest.ql

/**

* @name Inefficient empty string test

v Collapse source

* @description Checking a string for equality with an empty string is inefficient.

* @kind problem

* @problem.severity recommendation

* @precision high

* @id java/inefficient-empty-string-test
* @tags efficiency

* maintainability

*/
import java

from MethodAccess mc
where
mc.getQualifier().getType() instanceof TypeString and
mc.getMethod() .hasName("equals") and
(
mc.getArgument(0).(StringLiteral).getRepresentedString()
mc.getQualifier().(StringLiteral).getRepresentedString()

)

or

select mc, "Inefficient comparison to empty string, check for zero length instead."

(c) 2020 C. Le Goues

44

Practice: String concatenation in a loop

« Write pseudocode for a simple syntactic analysis that warns
when string concatenation occurs in a loop
o InJava and .NET it is more efficient to use a StringBuffer
o Assume any appropriate AST elements

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

WHILE abstract syntax

M

Categories:
o Se Stmt statements
o 0€ Aexp arithmetic expressions
o X yeVar variables
o ne Num number literals
o PeBExp boolean predicates
o | €labels statement addresses (line numbers)
Syntax:
o S ::=x:=a | skip | S; ; S,
| if P then S; else S, | while P do S
o a ::= x | n | a; op, a;
o op, ::=+ | = [x| /|
o P = true | false | not P | P, op, P, | al op, a2
o op, ::= and | or |
o op, ::=< | = | =[>]z]

SOFTWARE
RESEARCH

institute for ‘

Carnegie Mellon University
School of Computer Science

WHILE3ADDR:
An Intermediate Representation

« Simpler, more uniform than WHILE syntax

» (Categories:
o | € Instruction instructions

o X,y €\Var variables
o n € Num number literals
* Syntax:
o I ::= X :=n | x :=y | x :=y op z

| goto n | if x op, 0 goto n
o op, ::=+ | = | x| /| .
o op, =< | = | =]>]z=|
o P € Num-—>/

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Exercise: Translating to WHILE3ADDR

» (Categories:
o | € Instruction instructions

o X,y €\Var variables
o n € Num number literals
* Syntax:
o I ::= X :=n | x :=y | x :=y op z

| goto n | if x op, 0 goto n
o op, ::=+ | = | * | /|
o op, ::=< | =] =]>
o P € Num->/

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

While3Addr Extensions (more later)

* Syntax:

o I te= X ¢

n| x:=y | x :=y op z
| goto n | if x op, 0 goto n

| x := f£(y)
[return x

X = y.m(z)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

For next time

« Get on Piazza and Canvas
o Answer our quizzes about office hours!

« Read lecture notes and the course syllabus
« Homework 1 is released, and due next Thursday.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

