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Learning objectives
• Provide a high level definition of program analysis and give 

examples of why it is useful.
• Sketch the explanation for why all analyses must approximate.
• Understand the course mechanics, and be motivated to read the 

syllabus.
• Describe the function of an AST and outline the principles 

behind AST walkers for simple bug-finding analyses. 
• Recognize the basic WHILE demonstration language and 

translate between WHILE and While3Addr. 
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What is this course about?
• Program analysis is the systematic examination of a program to 

determine its properties.
• From 30,000 feet, this requires:

o Precise program representations
o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a 

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.
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Why might you care?
• Program analysis, and the skills that underlie it, have 

implications for:
o Automatic bug finding.
o Language design and implementation.
o Program synthesis.
o Program transformation (refactoring, optimization, repair).
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https://github.com/marketplace?category=code-quality
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IS THERE A BUG IN THIS CODE?
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

ERROR: function returns with 
interrupts disabled!
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1. sm check_interrupts {

2. // variables; used in patterns

3. decl { unsigned } flags;

4. // patterns specify enable/disable functions

5. pat enable = { sti() ; } 

6. | { restore_flags(flags); } ;

7. pat disable = { cli() ; }

8. //states; first state is initial

9. is_enabled : disable è is_disabled

10. | enable è { err(“double enable”); }

11.;

12. is_disabled : enable è is_enabled

13. | disable è { err(“double disable”); }

14.//special pattern that matches when

15.// end of path is reached in this state

16. | $end_of_path$ è

17. { err(“exiting with inter disabled!”); }

18.;

19.}

is_enabled

is_disabled

disable enable

enable è err(double enable)

end path è err(exiting with inter disabled)Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

disable è err(double disable)
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Initial state: is_enabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Transition to: is_disabled

14(c) 2020 C. Le Goues



1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Final state: is_disabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Transition to: is_enabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Final state: is_enabled
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Behavior of interest…
• Is on uncommon execution paths.

o Hard to exercise when testing.

• Executing (or analyzing) all paths is infeasible
• Instead: (abstractly) check the entire possible state space of 

the program.
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What is this course about?

• Program analysis is the systematic examination of a program to 
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a 

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.
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The Bad News: Rice's Theorem

"Any nontrivial property about the 
language recognized by a Turing 
machine is undecidable.“

Henry Gordon Rice, 1953
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Proof by contradiction (sketch)
Assume that you have a function that can determine if a program p has 
some nontrivial property (like divides_by_zero):

1. int silly(program p, input i) { 
2. p(i);
3. return 5/0; 
4. }
5. bool halts(program p, input i) {
6. return divides_by_zero(`silly(p,i)`);
7. }
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Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis: 
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect 
-> no false positives
typically underapproximated
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Sound Analysis

All Defects

Complete 
Analysis

Unsound 
and 
Incomplete 
Analysis
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What is this course about?

• Program analysis is the systematic examination of a program to 
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a 

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.
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What is this course about?

• Program analysis is the systematic examination of a program to 
determine its properties.

• Principal techniques:
o Dynamic:

§ Testing: Direct execution of code on test data in a controlled environment.
§ Analysis: Tools extracting data from test runs.

o Static:
§ Inspection: Human evaluation of code, design documents (specs and models), 

modifications.
§ Analysis: Tools reasoning about the program without executing it.

o …and their combination.
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Course topics
• Program representation
• Abstract interpretation: Use abstraction 

to reason about possible program 
behavior.
o Operational semantics.
o Dataflow Analysis
o Termination, complexity
o Widening, collecting
o Interprocedural analysis
o Datalog
o Control flow analysis

• Hoare-style verification: Make logical 
arguments about program behavior.
o Axiomatic semantics
o Separation logic: modern bug finding.

• Symbolic execution: test all possible 
executions paths simultaneously.
o Concolic execution
o Test generation

• SAT/SMT solvers
• Program synthesis
• Dynamic analysis
• Program repair
• Model checking (briefly) : reason 

exhaustively about possible program 
states.
o Take 15-414 if you want the full treatment!

• We will basically not cover types.
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Fundamental concepts
• Abstraction.

o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

• The importance of semantics.
o We prove things about analyses with respect to the semantics of the 

underlying language.

• Program proofs as inductive invariants.
• Implementation

o You do not understand analysis until you have written several.

28(c) 2020 C. Le Goues



Course mechanics
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When/what.
• Lectures 2x week (T,Th).

o Mostly not using slides (…this first lecture notwithstanding).
o Instead: board, lecture notes, exercises.
o Bring a pen/pencil.
o Try to stay off your devices.

• Recitation 1x week (Fr).
o Lab-like, very helpful for homework. 
o Bring your laptops.

• Homework, midterm exams, project.
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Communication
• We have a website and a Canvas site, with Piazza enabled.

o Follow the link from the main Canvas page/syllabus to sign up for 
Piazza.

• Please:
o Use Piazza to communicate with us as much as possible, unless the 

matter is sensitive. 
o Make your questions public as much as possible, since that’s the literal 

point of Piazza. 

• We have office hours! Or, by appointment.
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“How do I get an A?”
• 10% in-class participation and exercises
• 40% homework

o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) released!

• 30% two (2) midterm exams
o Date of second one depends a bit on guest lecture scheduling; I will post it 

ASAP.
• 20% final project

o There will be some options here.
• No final exam; exam slot used for project presentations.
• We have late days and a late day policy; read the syllabus.
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CMU can be a pretty intense place.

• A 12-credit course is expected to take ~12 hours a week.
• I aim to provide a rigorous but tractable course.

o More frequent assignments rather than big monoliths.
o Two exams reduces the pressure of just a single exam.

• Please keep me apprised of how much time the class is actually
taking and whether it is interfacing badly with other courses.
o I have no way of knowing if you have three midterms in one week.
o Sometimes, we misjudge assignment difficulty. 

• If it’s 2 am and you’re panicking…put my homework down, send 
me an email, and go to bed.
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What is this course about?

• Program analysis is the systematic examination of a program to 
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a 

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.
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Our first representation: Abstract Syntax
• A tree representation of source code based on the language 

grammar.
• Concrete syntax: The rules by which programs can be expressed 

as strings of characters.
o Use finite automata and context-free grammars, automatic lexer/parser 

generators

• Abstract syntax: a subset of the parse tree of the program.
• (The intuition is fine for this course; take compilers if you want to 

learn how to parse for real.)
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WHILE abstract syntax
• Categories:

o S∈ Stmt statements
o a∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::=  and | or | …
o opr ::= < | ≤ | = | > | ≥ | ... 

Concrete syntax is 
similar, but adds things 
like (parentheses) for 
disambiguation during 
parsing
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Example WHILE program
y := x;
z := 1;
while y > 1 do 

z := z * y; 
y := y – 1
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Exercise: Building an AST
y := x;
z := 1;
while y > 1 do 

z := z * y; 
y := y – 1 
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Exercise: Building an AST for C code
void copy_bytes(char dest[], char source[], int n) {

for (int i = 0; i < n; ++i)
dest[i] = source[i];

}
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Our first static analysis: AST walking
• One way to find “bugs” is to walk the AST, looking for particular 

patterns. 
o Walk the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question. 

• Various frameworks, some more language-specific than others.
o Tension between language agnosticism and semantic information available.
o Consider “grep”: very language agnostic, not very smart. 

• One common architecture based on Visitor pattern:
o class Visitor has a visitX method for each type of AST node X
o Default Visitor code just descends the AST, visiting each node 
o To find a bug in AST element of type X, override visitX

• Other more recent approaches based on semantic search, declarative 
logic programming, or query languages.
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Example: shifting by more than 31 bits.

For each instruction I in the program

if I is a shift instruction

if (type of I’s left operand is int
&& I’s right operand is a constant
&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)
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https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test
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Practice: String concatenation in a loop
• Write pseudocode for a simple syntactic analysis that warns 

when string concatenation occurs in a loop
o In Java and .NET it is more efficient to use a StringBuffer
o Assume any appropriate AST elements
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WHILE abstract syntax
• Categories:

o S∈ Stmt statements
o a∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::=  and | or | …
o opr ::= < | ≤ | = | > | ≥ | ... 
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WHILE3ADDR:
An Intermediate Representation
• Simpler, more uniform than WHILE syntax
• Categories:

o I      ∈ Instruction instructions
o x, y ∈ Var variables
o n    ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

|  goto n | if x opr 0 goto n
o opa ::= + | - | * | / | …
o opr ::= < | ≤ | = | > | ≥ | ...
o P ∈ Num à I
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Exercise: Translating to WHILE3ADDR
• Categories:

o I      ∈ Instruction instructions
o x, y ∈ Var variables
o n    ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

|  goto n | if x opr 0 goto n
o opa ::= + | - | * | / | …
o opr ::= < | ≤ | = | > | ≥ | ...
o P ∈ Num à I
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While3Addr Extensions (more later)
• Syntax:

o I ::= x := n | x := y | x := y op z
|  goto n | if x opr 0 goto n
|  x := f(y)
|  return x
|  x := y.m(z)
|  x := &p
|  x := *p
|  *p := x
|  x := y.f
|  x.f := y
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For next time
• Get on Piazza and Canvas

o Answer our quizzes about office hours!

• Read lecture notes and the course syllabus
• Homework 1 is released, and due next Thursday.
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