
Lecture 1: Introduction
to Program Analysis

17-355/17-655/17-819: Program Analysis
Claire Le Goues
January 14, 2020

* Course materials developed with Jonathan Aldrich

1(c) 2020 C. Le Goues

Learning objectives
• Provide a high level definition of program analysis and give

examples of why it is useful.
• Sketch the explanation for why all analyses must approximate.
• Understand the course mechanics, and be motivated to read the

syllabus.
• Describe the function of an AST and outline the principles

behind AST walkers for simple bug-finding analyses.
• Recognize the basic WHILE demonstration language and

translate between WHILE and While3Addr.

2(c) 2020 C. Le Goues

What is this course about?
• Program analysis is the systematic examination of a program to

determine its properties.
• From 30,000 feet, this requires:

o Precise program representations
o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

3(c) 2020 C. Le Goues

Why might you care?
• Program analysis, and the skills that underlie it, have

implications for:
o Automatic bug finding.
o Language design and implementation.
o Program synthesis.
o Program transformation (refactoring, optimization, repair).

4(c) 2020 C. Le Goues

5(c) 2020 C. Le Goues

6(c) 2020 C. Le Goues

https://github.com/marketplace?category=code-quality

7
(c) 2020 C. Le Goues

https://github.com/marketplace%3Fcategory=code-quality

8
(c) 2020 C. Le Goues

9(c) 2020 C. Le Goues

IS THERE A BUG IN THIS CODE?

10(c) 2020 C. Le Goues

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

ERROR: function returns with
interrupts disabled!

11(c) 2020 C. Le Goues

1. sm check_interrupts {

2. // variables; used in patterns

3. decl { unsigned } flags;

4. // patterns specify enable/disable functions

5. pat enable = { sti() ; }

6. | { restore_flags(flags); } ;

7. pat disable = { cli() ; }

8. //states; first state is initial

9. is_enabled : disable è is_disabled

10. | enable è { err(“double enable”); }

11.;

12. is_disabled : enable è is_enabled

13. | disable è { err(“double disable”); }

14.//special pattern that matches when

15.// end of path is reached in this state

16. | end_of_path è

17. { err(“exiting with inter disabled!”); }

18.;

19.}

is_enabled

is_disabled

disable enable

enable è err(double enable)

end path è err(exiting with inter disabled)Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

disable è err(double disable)

12(c) 2020 C. Le Goues

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Initial state: is_enabled

13(c) 2020 C. Le Goues

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Transition to: is_disabled

14(c) 2020 C. Le Goues

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Final state: is_disabled

15(c) 2020 C. Le Goues

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Transition to: is_enabled

16(c) 2020 C. Le Goues

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Final state: is_enabled

17(c) 2020 C. Le Goues

Behavior of interest…
• Is on uncommon execution paths.

o Hard to exercise when testing.

• Executing (or analyzing) all paths is infeasible
• Instead: (abstractly) check the entire possible state space of

the program.

18(c) 2020 C. Le Goues

What is this course about?

• Program analysis is the systematic examination of a program to
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

19(c) 2020 C. Le Goues

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

20(c) 2020 C. Le Goues

Proof by contradiction (sketch)
Assume that you have a function that can determine if a program p has
some nontrivial property (like divides_by_zero):

1. int silly(program p, input i) {
2. p(i);
3. return 5/0;
4. }
5. bool halts(program p, input i) {
6. return divides_by_zero(`silly(p,i)`);
7. }

21(c) 2020 C. Le Goues

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

22(c) 2020 C. Le Goues

Sound Analysis

All Defects

Complete
Analysis

Unsound
and
Incomplete
Analysis

23(c) 2020 C. Le Goues

24
(c) 2020 C. Le Goues

https://yanniss.github.io/Soundiness-CACM.pdf

https://yanniss.github.io/Soundiness-CACM.pdf

What is this course about?

• Program analysis is the systematic examination of a program to
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

25(c) 2020 C. Le Goues

What is this course about?

• Program analysis is the systematic examination of a program to
determine its properties.

• Principal techniques:
o Dynamic:

§ Testing: Direct execution of code on test data in a controlled environment.
§ Analysis: Tools extracting data from test runs.

o Static:
§ Inspection: Human evaluation of code, design documents (specs and models),

modifications.
§ Analysis: Tools reasoning about the program without executing it.

o …and their combination.

26(c) 2020 C. Le Goues

Course topics
• Program representation
• Abstract interpretation: Use abstraction

to reason about possible program
behavior.
o Operational semantics.
o Dataflow Analysis
o Termination, complexity
o Widening, collecting
o Interprocedural analysis
o Datalog
o Control flow analysis

• Hoare-style verification: Make logical
arguments about program behavior.
o Axiomatic semantics
o Separation logic: modern bug finding.

• Symbolic execution: test all possible
executions paths simultaneously.
o Concolic execution
o Test generation

• SAT/SMT solvers
• Program synthesis
• Dynamic analysis
• Program repair
• Model checking (briefly) : reason

exhaustively about possible program
states.
o Take 15-414 if you want the full treatment!

• We will basically not cover types.

27(c) 2020 C. Le Goues

Fundamental concepts
• Abstraction.

o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

• The importance of semantics.
o We prove things about analyses with respect to the semantics of the

underlying language.

• Program proofs as inductive invariants.
• Implementation

o You do not understand analysis until you have written several.

28(c) 2020 C. Le Goues

Course mechanics

29(c) 2020 C. Le Goues

When/what.
• Lectures 2x week (T,Th).

o Mostly not using slides (…this first lecture notwithstanding).
o Instead: board, lecture notes, exercises.
o Bring a pen/pencil.
o Try to stay off your devices.

• Recitation 1x week (Fr).
o Lab-like, very helpful for homework.
o Bring your laptops.

• Homework, midterm exams, project.

30(c) 2020 C. Le Goues

Communication
• We have a website and a Canvas site, with Piazza enabled.

o Follow the link from the main Canvas page/syllabus to sign up for
Piazza.

• Please:
o Use Piazza to communicate with us as much as possible, unless the

matter is sensitive.
o Make your questions public as much as possible, since that’s the literal

point of Piazza.

• We have office hours! Or, by appointment.

31(c) 2020 C. Le Goues

“How do I get an A?”
• 10% in-class participation and exercises
• 40% homework

o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) released!

• 30% two (2) midterm exams
o Date of second one depends a bit on guest lecture scheduling; I will post it

ASAP.
• 20% final project

o There will be some options here.
• No final exam; exam slot used for project presentations.
• We have late days and a late day policy; read the syllabus.

32(c) 2020 C. Le Goues

CMU can be a pretty intense place.

• A 12-credit course is expected to take ~12 hours a week.
• I aim to provide a rigorous but tractable course.

o More frequent assignments rather than big monoliths.
o Two exams reduces the pressure of just a single exam.

• Please keep me apprised of how much time the class is actually
taking and whether it is interfacing badly with other courses.
o I have no way of knowing if you have three midterms in one week.
o Sometimes, we misjudge assignment difficulty.

• If it’s 2 am and you’re panicking…put my homework down, send
me an email, and go to bed.

33(c) 2020 C. Le Goues

What is this course about?

• Program analysis is the systematic examination of a program to
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

34(c) 2020 C. Le Goues

Our first representation: Abstract Syntax
• A tree representation of source code based on the language

grammar.
• Concrete syntax: The rules by which programs can be expressed

as strings of characters.
o Use finite automata and context-free grammars, automatic lexer/parser

generators

• Abstract syntax: a subset of the parse tree of the program.
• (The intuition is fine for this course; take compilers if you want to

learn how to parse for real.)

35(c) 2020 C. Le Goues

WHILE abstract syntax
• Categories:

o S∈ Stmt statements
o a∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::= and | or | …
o opr ::= < | ≤ | = | > | ≥ | ...

Concrete syntax is
similar, but adds things
like (parentheses) for
disambiguation during
parsing

36(c) 2020 C. Le Goues

Example WHILE program
y := x;
z := 1;
while y > 1 do

z := z * y;
y := y – 1

37(c) 2020 C. Le Goues

Exercise: Building an AST
y := x;
z := 1;
while y > 1 do

z := z * y;
y := y – 1

38(c) 2020 C. Le Goues

Exercise: Building an AST for C code
void copy_bytes(char dest[], char source[], int n) {

for (int i = 0; i < n; ++i)
dest[i] = source[i];

}

39(c) 2020 C. Le Goues

Our first static analysis: AST walking
• One way to find “bugs” is to walk the AST, looking for particular

patterns.
o Walk the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question.

• Various frameworks, some more language-specific than others.
o Tension between language agnosticism and semantic information available.
o Consider “grep”: very language agnostic, not very smart.

• One common architecture based on Visitor pattern:
o class Visitor has a visitX method for each type of AST node X
o Default Visitor code just descends the AST, visiting each node
o To find a bug in AST element of type X, override visitX

• Other more recent approaches based on semantic search, declarative
logic programming, or query languages.

40(c) 2020 C. Le Goues

Example: shifting by more than 31 bits.

For each instruction I in the program

if I is a shift instruction

if (type of I’s left operand is int
&& I’s right operand is a constant
&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)

41(c) 2020 C. Le Goues

42

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

(c) 2020 C. Le Goues

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

43(c) 2020 C. Le Goues

44
(c) 2020 C. Le Goues

Practice: String concatenation in a loop
• Write pseudocode for a simple syntactic analysis that warns

when string concatenation occurs in a loop
o In Java and .NET it is more efficient to use a StringBuffer
o Assume any appropriate AST elements

45(c) 2020 C. Le Goues

WHILE abstract syntax
• Categories:

o S∈ Stmt statements
o a∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::= and | or | …
o opr ::= < | ≤ | = | > | ≥ | ...

46(c) 2020 C. Le Goues

WHILE3ADDR:
An Intermediate Representation
• Simpler, more uniform than WHILE syntax
• Categories:

o I ∈ Instruction instructions
o x, y ∈ Var variables
o n ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

| goto n | if x opr 0 goto n
o opa ::= + | - | * | / | …
o opr ::= < | ≤ | = | > | ≥ | ...
o P ∈ Num à I

47(c) 2020 C. Le Goues

Exercise: Translating to WHILE3ADDR
• Categories:

o I ∈ Instruction instructions
o x, y ∈ Var variables
o n ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

| goto n | if x opr 0 goto n
o opa ::= + | - | * | / | …
o opr ::= < | ≤ | = | > | ≥ | ...
o P ∈ Num à I

48(c) 2020 C. Le Goues

While3Addr Extensions (more later)
• Syntax:

o I ::= x := n | x := y | x := y op z
| goto n | if x opr 0 goto n
| x := f(y)
| return x
| x := y.m(z)
| x := &p
| x := *p
| *p := x
| x := y.f
| x.f := y

49(c) 2020 C. Le Goues

For next time
• Get on Piazza and Canvas

o Answer our quizzes about office hours!

• Read lecture notes and the course syllabus
• Homework 1 is released, and due next Thursday.

50(c) 2020 C. Le Goues

