
Lecture Notes: Program Repair as Reachability

17-355/17-665/17-819: Program Analysis (Spring 2020)
Claire Le Goues∗

clegoues@cs.cmu.edu

There are useful correspondences between techniques we have used for verification and those
we then explored for synthesis and repair. For example, verification condition generation began as
a method to prove programs correct; generating these conditions forwards rather than backwards
allowed us to develop a way to generalize testing through symbolic execution; we could then use
symbolic/concolic execution as a way to perform synthesis for repair of certain types of defects.

Today, we will explore a formal connection between program synthesis (for repair, specifically)
and verification, formulated as a reachability problem.

1 Template-based program synthesis for repair

One general way to formulate program repair is as a problem of selecting and appropriately in-
stantiating one or more repair templates at the appropriate points in a program. We define a general
syntax for a templated program along the following lines (borrowing from the WHILE syntax, but
simplifying somewhat for the purposes of this discussion):

S ::“ x :“ a a ::“ a1 ` a2
| skip | a1 ´ a2
| S1; S2 | ci called a template parameter!
| if P then S1 else S2 | . . .
| while P do S

Given a templated program with template parameters c1 . . . cn and given template values v̄ “
v1 . . . vn (corresponding to expressions or constants), we can instantiate thatt emplate on those
values to yield a non-templated program. We can define instantiation in a straightforward, syntax-
directed way:

instpskip, v̄q Ñ skip
instpS1;S2, v̄q Ñ instpS1, v̄q; instpS2, v̄q
instpx :“ a, v̄q Ñ x “ instpa, v̄q
instp ci , v̄q Ñ vi

The template-based program synthesis problem is then defined as follows:

∗These notes draw from Nguyen et al., “Connecting Program Synthesis and Reachability: Automatic Program Re-
pair using Test-Input Generation”, TACAS 2017 and a set of course materials generously provided by Wes Weimer.

1

Given a templated program P with template parameters c1 . . . cn, and a set T of input-
output pairs (tests), do there exist template values v̄ “ v1 . . . vn such that for all xα0, β0y . . . xαn, βny
in T , pinstpP, v̄qqpαiq “ βi?

Note that we are ambivalent as to the mechanism used to identify v̄, and that many of the
inductive techniques we have discussed either for synthesis proper or for program repair specifi-
cally fit in this framing (consider syntax-guided synthesis).

We can extend this representation to program repair by constructing templated programs from
the original program and replacing potentially buggy lines with potential template ci . By syn-
thesizing some code to fill arbitrary hole, the repair effectively becomes “delete buggy statement
X and replace with instantiated template Y.” Overall, these templates focus on expression-level
manipulation; extending this framing to statement-level modifications is an open problem.

For the purposes of this exposition, we ignore fault localization, focus on single-edit repairs,
and on templates encoding linear combinations of variables. Actual repair based on these ideas
generalizes by trying several locations/templates in some order. More complicated (e.g., non-
linear) templates are usable as well.

2 Program Reachability

The problem of reachability as applied to programs asks, very generally, whether given a program
P , a set of program variables x1 . . . xn and some program label L, do there exist values c1...cn such
that P with xi “ ci reaches label L in finite time?

We have seen this applied to finding bugs using symbolic execution (e.g., formulating buffer
overflows as reaching an error state via program transformation). Test generation can also be
viewed as generating ci for test inputs with L corresponding to the end of a desired execution
path. It is also applicable to model checking, as we will see in future course lessons.

The following code example revisits the idea/intuition, calling back to our prior discussions
on test generation:

1 i n t x , y ; /∗ globa l input ∗/
2 i n t P () {
3 i f (2 ∗ x == y) {
4 i f (x > y + 10)
5 [L]
6 re turn 0 ;
7 }

Here, x “ ´20, y “ ´40 reaches the label.

3 Reducing Synthesis To Reachability

Both reachability and synthesis are undecidable in general. You may recall how reductions work
from prior theory or algorithms courses. In brief, Problem A is reducible to Problem B if an ef-
ficient algorithm for B could be used as a subroutine to solve A efficiently. A gadget is a subset
of a problem instance that simulates the behavior of one of the fundamental units of a different
problem.

2

3.1 Defining GadgetS2R

Thus, given an instance of a synthesis (repair) problem, and assuming we have an oracle that
can solve reachability, let us convert the synthesis instance into a reachability instance. If we can
do this efficiently, any existing reachability tool/technique (e.g., one that performs symbolic or
concolic execution) could be used to repair programs.

Give Q, a template program with a set of template parameters S “ tc1, . . . , cnu and a set of
finite tests T “ pα1, β1q, . . ., construct GadgetS2RpQ,S, T qwhich returns a new program P with a
special location L, as follows:

1. For every template parameter c̄i, add a fresh global variable vi. A solution to the reachability
instance is an assignment of concrete values ci to variables vi.

2. For every function q P Q, define a similar function qP P P . The body of qP is the same
as q, but with every reference to a template parameter c̄i replaced with a reference to the
corresponding new variable vi

3. P also contains a starting function mainP that encodes the specification information from
the test suite T as a conjunctive expression e:

e “
Ź

pαi,βiqPT

mainQP pαiq “ βi

where mainQP is a function in P corresponding to the starting function mainQ in Q. The
body of mainP is then a single conditional statement that leads to a fresh target location L
iff e is true.

4. P overall consists of the declaration of new variables, the functions qP , and the starting
function mainP

3.2 Illustrative example

Consider the code sample we used in discussing semantics-based program repair:

1 i n t is upward (i n t in , i n t up , i n t down) {
2 i n t bias , r ;
3 i f (in)
4 b i a s = down ; // f i x : b i a s = up + 100
5 e l s e
6 b i a s = up ;
7
8 i f (b i a s > down)
9 r = 1 ;

10 e l s e
11 r = 0 ;
12 re turn r
13 }

And a set of test cases that highlight the bug:

3

Inputs Output
Test in up down expected observed Passed?

1 1 0 100 0 0 Yes
2 1 11 110 1 0 No
3 0 100 50 1 1 Yes
4 1 -20 60 1 0 No
5 0 0 -10 1 1 Yes

Assuming we select the buggy line and attempt a linear combination of variables as a template,
this transforms the buggy code into a templated program as so:

1 i n t is upward (i n t in , i n t up , i n t down) {
2 i n t bias , r ;
3 i f (in)
4 b i a s = c0 + c1 ∗ b i a s + c2 ∗ in + c3 ∗ up + c4 ∗ down ;
5 e l s e
6 b i a s = up ;
7
8 i f (b i a s > down)
9 r = 1 ;

10 e l s e
11 r = 0 ;
12 re turn r ;
13 }

The reachability instance corresponding to this program then looks like:

1 i n t c0 , c1 , c2 , c3 , c4 ; /∗ globa l input ∗/
2
3 i n t P is upward (i n t in , i n t up , i n t down) {
4 i n t bias , r ;
5 i f (in)
6 b i a s = c0 + c1 ∗ b i a s + c2 ∗ in + c3 ∗ up + c4 ∗ down ;
7 e l s e
8 b i a s = up ;
9

10 i f (b i a s > down)
11 r = 1 ;
12 e l s e
13 r = 0 ;
14 re turn r ;
15 }
16 i n t main () {
17 i f (p is upward (1 , 0 , 1 0 0) == 0 &&
18 p is upward (1 , 1 1 , 1 1 0) == 1 &&
19 p is upward (0 , 1 0 0 , 5 0) == 1 &&
20 p is upward (1 ,´20 ,60) == 1 &&
21 p is upward (0 , 0 , 1 0) == 0 &&
22 p is upward (0 ,0 ,´10) == 1) {
23 [L] // l a b e l !
24 }
25 re turn 0 ;
26 }

A valid solution to the reachability problem identifies global inputs c0 = 100, c1 = 0,
c2 = 0, c3 = 1, c4 = 0; this corresponds to instantiating the template on line 4 with bias
= up + 100;, a valid patch for this bug.

4

4 Proof of correctness

To prove the correctness of this reduction, we must show that the constructed reachability instance
is solvable (with values c1 . . . cn) iff the original synthesis instance is solvable (with those same
values). The reachability instance is solved if those values cause execution to reach L, while the
synthesis instance is solved if those same values cause every test to pass.

The proof uses standard operational semantics to reason about the meaning and executions of
programs. We use large-step semantics (ó) to reason about synthesis, which focuses on the final
value of the program (its behavior on a test). W uses small-step semantics (Ñ) to reason about
reachability, where the intermediate steps matter (was a particular label reached?). The proof
uses induction on the structure of a derivation to show that a property holds for all exeuctions of
all programs, and weakest preconditions to reason about the special conditional statements that
encode test cases.

The high-level proof structure is as follows:

• Lemma 1: The reachability instance method and the synthesis instance method agree on the
values of all (non-template) variables.

• Lemma 2: If the reachability instance reaches L from a state S (with values c1 ldotscn), then
that state and values model the weakest precondition of the synthesis instance method pass-
ing each test.

• Theorem 1. The synthesis instance is solvable iff the reachability instance is solvable (with
the same values).

4.1 Lemma 1: Agree on Vars

The idea here is to show that the derived program (pqpαiq) behaves the same as the original pro-
gram qrc0, . . . , cnspαiq

1 when the new variables vi in P are assigned the values ci.
Formally, let Q be the input synthesis instance method with template variables v1 . . . vn. Let

P “ GadgetS2RpQq be the reachability instance corresponding to methodP . For all statesE1, E2, E3,
all values c1, . . . cn, all input values x, we seek to prove that it holds that:

if E1pviq “ ci, then D1 :: xP pxq, E1y ó E2 iff
D2 :: xinstpQ, c̄q, E1y ó E3

and @y ‰ vi, E2pyq “ E3pyq.

The proof proceeds by induction on the structure of an operational semantics derivation D1.
LetE1 be arbitrary, except withE1pviq “ ci. Importantly, every pqpiq P P corresponds to qrc1, . . . , cnspeq P
Q, in the sense that all subexpressions in pq and q are identical except that references to template
parameters ci in Q correspond to references to variables vi in P . Thus, by inversion, the struc-
ture of D1 corresponds exactly to the structure of D2, except for the variable references. Thus,
although for completeness we’d consider all cases for the derivation D1, in practice we’ll only
show the interesting case, which is a read/assignment of a templated variable.

Case: Suppose D1 (reachability instance) is:

1qrc0, . . . , cns is another way of saying “q instantiated on c0, . . . , cn”

5

E2 “ E1ra ÞÑ E1pviqs

xa :“ vi, E1y ó E2
assign

By inversion and the construction of P , D2 is:

E3 “ E1ra ÞÑ cis

xa :“ exp,E1y ó E3
assign

where exp “ instp ci , c̄q “ ci
Now, we know that E2 “ E1ra Ñ E1pviqs and E3 “ E1ra Ñ cis. We know that E2 and E3

agree on all variables except a (because they are the same as E1, for all variables except a). So, this
obligation simplifies to showing that E1pviq “ ci. This is actually one of the assumptions in the
statement of the lemma. (Intuitively, it means the reachability analysis assigned ci to each variable
vi to reach the label L.)

The other cases are direct, because they do not involve the template paramters vi: the inference
rule used in D1 will exactly mirror the inference rule used in D2.

We have therefore established that the executions of P ’s functions mirror Q’s functions, mod-
ulo the template parameters, which are held constant.

4.2 Lemma 2 (Reach L = Pass tests)

We now establish that reachingL in P by assigning each vi the value ci corresponds toQrci, . . . , cns
passing all of the tests.

LetQ be the input synthesis instance method with template variables v1vn and tests xα1, βny
Let P “ GadgetS2RpQq be the reachability instance method main.

We know that the execution ofP reachesL starting from stateE1 iffE1 (wppinstpQ, c̄qpα1q, result “
β1q ^ . . . wppinstpQ, c̄pαnq, result “ βnq where E1pviq “ ci. By gadget construction, we also know
there is only one label L in P , if e then rLs, and that e is of the form fpα1q “ β1 ^ . . . fpαnq “ βn.

By standard weakest precondition definitions for if, conjunction, equality and function calls,
we have thatL is reachable iffE1 (wppresult :“ fpα1q, result “ β1q^. . . wppresult :“ fpαnq, result “
βnq. What we want is that L is reachable iff E1 (wppresult :“ instpQ, c̄qpα1q, result “ β1q ^
. . . wppresult :“ instpQ, cqpαnq, result “ βnq

So, we have to show that E1 (wppresult :“ fpαiq, result “ βiq iff E1 (wppresult :“
instpQ, c̄qpαiq, result “ βiq. f here is the method from GadgetS2R(Q).

By the soundness and completeness of weakest preconditions wrt operational semantics, we
have xresult :“ fpαiq, E1y ó E2 iffE2 (result “ βi. By Lemma 1, we have xresult :“ instpQ, c̄qpαiq, E1y ó

E3 iff E1pyq “ E3pyq for all y ‰ vi. Since “result” ‰ vi, E1presultq “ E3presultq (we know this
from lemma 1) and E3presultq “ βi (because of the weakest precondition reasoning above). So,
running the template program Q instantiated with ci “ vi on a test input produces the required
output.

4.3 Correctness

This leads us to the correctness theorem, which is as follows: Let Q be the input synthesis in-
stance method with template variables v1...vn and tests xα1, βny. Let P “ GadgetS2RpQq be the
reachability instance method main.

There exist parameter values ci such that for all xαi, βiy, instpQ, c̄qpαiq “ βi iff there exists input
values ti s.t. the execution of P with vi Ñ ti reaches L. The proof is from Lemma 2 with ti “ ci.

6

Note that we can also carry out a constructive reduction going in the other direction. That is,
suppose we are given an instance of program reachability. Can we convert it into a program synthesis
instance to solve it?2

5 Implications

Program reachability tools and techniques are much more mature than program repair tools. This
correspondence between the problems therefore suggests a way to use reachability to attempt
to fix bugs in programs. It proceeds by, for every potentially buggy line, in some ranked order,
and then for every possible considered repair template, also in some ranked order, converting the
repair instance to a reachability instance and then calling an off-the-shelf reachability tool (e.g., an
SMT solver-based concolic execution engine like KLEE). If the label is reachable, the discovered
parameters in the satisfying model can be returned for instantiation as a program patch.

Overall, this correspondance helps illustrate how all of the techniques we have discussed (e.g.,
test generation, model checking, verification) are seeking, in some way, to statically reason about
dynamic execution. We can sometimes take advantage of this correspondence to discover new
techniques, as this particular reduction demonstrates.

2We elide these details but note they are expanded upon in the original publication.

7

