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Note: A complete, if lengthy, resource on inductive program synthesis is the book “Program Syn-
thesis” by Gulwani et. al [8]. You need not read the whole thing; I encourage you to investigate the
portions of interest to you, and skim as appropriate. Many references in this document are drawn
from there; if you are interested, it contains many more.

1 Program Synthesis Overview

The problem of program synthesis can be expressed as follows:

DP . @x . ϕpx, P pxqq

In the setting of constructive logic, proving the validity of a formula that begins with an existen-
tial involves coming up with a witness, or concrete example, that can be plugged into the rest of the
formula to demonstrate that it is true. In this case, the witness is a program P that satisfies some
specification ϕ on all inputs. We take a liberal view of P in discussing synthesis, as a wide vari-
ety of artifact types have beeen successfully synthesized (anything that reads inputs or produces
outputs). Beyond (relatively small) program snippets of the expected variety, this includes pro-
tocols, interpreters, classifiers, compression algorithms or implementations, scheduling policies,
and cache coherence protocols for multicore processors. The specification ϕ is an expression of the
user intent, and may be expressed in one of several ways: a formula, a reference implementation,
input/output pairs, traces, demonstrations, or a syntactic sketch, among other options.

Program synthesis can thus be considered along three dimensions:

(1) Expressing user intent. User intent (or ϕ in the above) can be expressed in a number of
ways, including logical specifications, input/output examples [4] (often with some kind of user- or
synthesizer-driven interaction), traces, natural language [3, 7, 13], or full- or partial programs [20].
In this latter category lies reference implementations, such as executable specifications (which
give the desired output for a given input) or declarative specifications (which check whether a
given input/output pair is correct). Some synthesis techniques allow for multi-modal specifica-
tions, including pre- and post- conditions, safety assertions at arbitrary program points, or partial
program templates.

Such specifications can constrain two aspects of the synthesis problem:

• Observable behavior, such as an input/output relation, a full executable specification or
safety property. This specifies what a program should compute.

∗These notes are created in collaboration with Jonathan Aldrich
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• Structural properties, or internal computation steps. These are often expressed as a sketch
or template, but can be further constrained by assertions over the number or variety of op-
erations in a synthesized programs (or number of iterations, number of cache misses, etc,
depending on the synthesis problem in question). Indeed, one of the key principles behind
the scaling of many modern synthesis techniques lie in the way they syntactically restrict the
space of possible programs, often via a sketch, grammar, or DSL.

.
Note that basically all of the above types of specifications can be translated to constraints in

some form or another. Techniques that operate over multiple types of specifications can overcome
various challenges that come up over the course of an arbitrary synthesis problem. Different
specification types are more suitable for some types of problems than others. In addition, trace-
or sketch-based specifications can allow a synthesizer to decompose a synthesis problems into
intermediate program points.

Question: how many ways can we specify a sorting algorithm?

(2) Search space of possible programs. The search space naturally includes programs, often
constructed of subsets of normal programming languages. This can include a predefined set of
considered operators or control structures, defined as grammars. However, other spaces are con-
sidered for various synthesis problems, like logics of various kinds, which can be useful for, e.g.,
synthesizing graph/tree algorithms.

(3) Search technique. At a high level, there are two general approaches to logical synthesis:

• Deductive (or classic) synthesis (e.g., [15]), which maps a high-level (e.g. logical) specifica-
tion to an executable implementation, classically using a theorem prover. Such approaches
are efficient and provably correct: thanks to the semantics-preserving rules, only correct
programs are explored. However, they require complete specifications and sufficient axiom-
atization of the domain. These approaches are classically applied to e.g., controller synthesis.

• Inductive (sometimes called syntax-guided) synthesis, which takes a partial (and often multi-
modal) specification and constructs a program that satisfies it. These techniques are more
flexible in their specification requirements and require no axioms, but often at the cost of
lower efficiency and weaker bounded guarantees on the optimality of synthesized code.

Deductive synthesis shares quite a bit in common, conceptually, with compilation: rewriting
a specification according to various rules to achieve a new program in at a different level of rep-
resentation. However, deductive synthesis approaches assume a complete formal specification of
the desired user intent was provided. In many cases, this can be as complicated as writing the
program itself.

This has motivated new inductive synthesis approaches, towards which considerable modern
research energy has been dedicated. This category of techniques lends itself to a wide variety of
search strategies, including brute-force or enumerative [1] (you might be surprised!), probabilistic
inference/belief propagation [6], or genetic programming [12]. Alternatively, techniques based on
logical reasoning delegate the search problem to a constraint solver. We will spend more time on
this set of techniques.
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2 Deductive Synthesis

We will very briefly overview Denali [11], a prototypical deductive synthesis technique for su-
peroptimization.1 Denali seeks to generate short sequences of provably optimal loop-free machine
instructions, for use primarily incompilation. While compilers generate reasonably good code,
there are cases in which we would instead prefer provably optimal code. Generating such code
is the task of a superoptimizer (so-called because the title of optimization “has been given to a
field that does not aspire to optimize but only to improve”). Early approaches for superoptimiza-
tion attempted to enumerate via brute force (in order of increasing length) efficient sequences of
instructions, with correctness checked by hand and against a set of test cases. This correctness
critierion is challenging to confirm, however, and does not necessarily result in optimality.

Joshi et al. propose an approach to superoptimization based on theorem proving. The “obvi-
ous” approach (which they do not take) would be to, given a desired program fragment P, express
in formal logic “no program of the target architecture computes P in at most N cycles.” How-
ever, this obvious approach is very difficult to manage with a theorem prover, because it must be
expressed using nested quantifiers.

Instead, they propose a process based on the idea that for sufficiently simple programs, equiv-
alence between a desired P and some alternative implementation M for all inputs is essentially
the universal validity of an equality between two vectors of terms (the one M computes, and the
terms specified by P in the computatoin). This type of equivalience can be proved by matching,
which is a well understood technique in theorem proving.

To do this, their technique, named Denali, takes as input a program P written in a DSL for the
associated target architecture. It then constructs an E-graph using the specified desired program
P as input. An E-graph is a term DAG corresponding to the expression to be synthesized, aug-
mented with an equivalence relation on the nodes of the DAG. Two nodes are equivalent if the
terms they represent are identical in value. Denali then uses a theorem prover, along with two sets
of axioms (encoding instruction semantics—an interpreter for the target language, effectively—and
algebraic properties—memory modeling, mostly), to search the e-graph for the most efficient way
to compute the expression.

3 Inductive Synthesis

Inductive synthesis uses inductive reasoning to construct programs in response to partial specifi-
cations. The program is synthesized via a symbolic interpretation of a space of candidates, rather
than by deriving the candidate directly. So, to synthesize such a program, we basically only require
an interpreter, rather than a sufficient set of derivation axioms. Inductive synthesis is applicable
to a variety of problem types, such as string transformation (FlashFill) [5], data extraction/pro-
cessing/wrangling [4, 19], layout transformation of tables or tree-shaped structures [21], graphics
(constructing structured, repetitive drawings) [9, 2], program repair [16, 14] (spoiler alert!), super-
optimization [11], and efficient synchronization, among others.

Inductive synthesis consists of several family of approaches; we will overview several promi-
nent examples, without claiming to be complete.

1This explanation is further illustrated using the associated lecture slides.
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3.1 SKETCH, CEGIS, and SyGuS

SKETCH is a well-known synthesis system that allows programs to provide partial programs (a
sketch) that expresses the high-level structure of the intended implementation but leaves holes
for low-level implementation details. The synthesizer fills these holes from a finite set of choices,
using an approach now known as Counterexample-guided Inductive Synthesis (CEGIS) [20, 18].
This well-known synthesis architecture divies the problem into search and verification components,
and uses the output from the latter to refine the specification given to the former.

We have a diagram to illustrate on slides.

Syntax-Guided Synthesis (or SyGuS) formalizes the problem of program synthesis where specifi-
cation is supplemented with a syntactic template. This defines a search space of possible programs
that the synthesizer effectively traverses. Many search strategies exist; two especially well-known
strategies are enumerative search (which can be remarkably effective, though rarely scales), and
deductive or top down search, which recursively reduces the problem into simpler sub-problems.

3.2 Oracle-guided synthesis

Templates or sketches are often helpful and easy to write. However, they are not always available.
Beyond search or enumeration, constraint-based approaches translate a program’s specification
into a constraint system that is provided to a solver. This can be especially effective if combined
with an outer CEGIS loop that provides oracles.

This kind of synthesis can be effective when the properties we care about are relatively easy to
verify. For example, imagine we wanted to find a maximum number m in a list l.

Turn to the handout, which asks you to specify this as a synthesis problem...

DPmax@l,m : Pmaxplq “ mñ pm P lq ^ p@x P l : m ě xq

Proving this involves the following formula:

@l,m : Pmaxplq “ mñ pm P lq ^ p@x P l : m ě xq

Note that instead of proving that a program satisfies a given formula, we can instead disprove
its negation, which is:

Dl,m : pPmaxplq “ mq ^ pm R l _ Dx P l : m ă xq

If the above is satisfiable, a solver will give us a counterexample, which we can use to strengthen
the specification–so that next time the synthesis engine will give us a program that excludes this
counterexample. We can make this counterexample more useful by asking the solver not just to
provide us with an input that produces an error, but also to provide the corresponding correct
output m˚:

Dl,m˚ : pPmaxplq ‰ m˚q ^ pm˚ P lq ^ p@x P l : m˚ ě xq

This is a much stronger constraint than the original counterexample, as it says what the pro-
gram should output in this case rather than one example of something it should not output. Thus
we now have an additional test case for the next round of synthesis. This counterexample-guided
sythesis approach was originally introduced for SKETCH, and was generalized to oracle-guided
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inductive synthesis by Jha and Seshia. Different oracles have been developed for this type of
synthesis. We will discussed component-based oracle-guided program synthesis in detail, which
illustrates the use of distinguishing oracles.

4 Oracle-guided Component-based Program Synthesis

Problem statement and intuition.2 Given a set of input-output pairs ă α0, β0 ą . . . ă αn, βn ą
and N components f1, . . . fn, the goal is to synthesize a function f out of the components such
that @αi.fpαiq produces βi. We achieve this by constructing and solving a set of constraints over f ,
passing those constraints to an SMT solver, and using a returned satisfying model to reconstruct
f . In this approach, the synthesized function will have the following form:

0 z0 :“ input0

1 z1 :“ input1

. . . . . .
m zm :“ inputm

m` 1 zm`1 :“ f?pz?, . . . , z?q
m` 2 zm`2 :“ f?pz?, . . . , z?q
. . . . . .
m` n zm`n :“ f?pz?, . . . , z?q
m` n` 1 return z?

The thing we have to do is fill in the ? indexes in the program above. These indexes essentially
define the order in which functions are invoked and what arguments they are invoked with. We
will assume that each component is used once, without loss of generality, since we can duplicate
the components.

Definitions. We will set up the problem for the solver using two sets of variables. One set repre-
sents the input values passed to each component, and the output value that component produces,
when the program is run for a given test case. We use ÝÑχ i to denote the vector of input values
passed to component i and ri to denote the result value computed by that component. So if we
have a single component (numbered 1) that adds two numbers, the input valuesÝÑχ 1 might be (1,3)
for a given test case and the output r1 in that case would be 4. We use Q to denote the set of all
variables representing inputs and R to denote the set of all variables representing outputs:

Q :“
ŤN
i“1
ÝÑχ i

R :“
ŤN
i“1 ri

We also define the overall program’s inputs to be the vector ÝÑY and the program’s output to be
r.

The other set of variables determines the location of each component, as well as the locations
at which each of its inputs were defined. We call these location variables. For each variable x, we
define a location variable lx, which denotes where x is defined. Thus lri is the location variable for
the result of component i and ÝÑlχi is the vector of location variables for the inputs of component i.
So if we have lr3 “ 5 and ÝÑlχ3 is (2,4), then we will invoke component #3 at line 5, and we will pass
variables z2 and z4 to it. L is the set of all location variables:

2These notes are inspired by Section III.B of Nguyen et al., ICSE 2013 [17] ...which provides a really beautifully clear
exposition of the work that originally proposed this type of synthesis in Jha et al., ICSE 2010 [10].
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L :“ tlx|x P QYRY
ÝÑ
Y Y ru

We will have two sets of constraints: one to ensure the program is well-formed, and the other
that ensures the program encodes the desired functionality.

Well-formedness. ψwfp denotes the well-formedness constraint. Let M “ |
ÝÑ
Y | ` N , where N is

the number of available components:

ψwfppL,Q,Rq
def
“

Ź

xPQ

p0 ď lx ăMq ^
Ź

xPR

p|
ÝÑ
Y | ď lx ăMq ^

ψconspL,Rq ^ ψacycpL,Q,Rq

The first line of that definition says that input locations are in the range 0 to M , while com-
ponent output locations are all defined after program inputs are declared. ψcons and ψacyc dictate
that there is only one component in each line and that the inputs of each component are defined
before they are used, respectively:

ψconspL,Rq
def
“

Ź

x,yPR,xıy

plx ‰ lyq

ψacycpL,Q,Rq
def
“

N
Ź

i“1

Ź

xPÝÑχ i,y”ri

lx ă ly

Functionality. φfunc denotes the functionality constraint that guarantees that the solution f satis-
fies the given input-output pairs:

φfuncpL,α, βq
def
“ ψconnpL,

ÝÑ
Y , r,Q,Rq ^ φlibpQ,Rq ^ pα “

ÝÑ
Y q ^ pβ “ rq

ψconnpL,
ÝÑ
Y , r,Q,Rq

def
“

Ź

x,yPQYRY
ÝÑ
Y Ytru

plx “ ly ñ x “ yq

φlibpQ,Rq
def
“ p

N
Ź

i“1
φipÝÑχ i, riqq

ψconn encodes the meaning of the location variables: If two locations are equal, then the values
of the variables defined at those locations are also equal. φlib encodes the semantics of the pro-
vided basic components, with φi representing the specification of component fi. The rest of φfunc
encodes that if the input to the synthesized function is α, the output must be β.

Almost done! φfunc provides constraints over a single input-output pair αi, βi, we still need to
generalize it over all n provided pairs tă αi, βi ą |1 ď i ď nu:

θ
def
“ p

n
Ź

i“1
φfuncpL,αi, βiqq ^ ψwfppL,Q,Rq

θ collects up all the previous constraints, and says that the synthesized function f should satisfy
all input-output pairs and the function has to be well formed.

LVal2Prog. The only real unknowns in all of θ are the values for the location variables L. So, the
solver that provides a satisfying assignment to θ is basically giving a valuation of L that we then
turn into a constructed program as follows:
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Given a valuation of L, Lval2ProgpLq converts it to a program as follows: The ith line of the

program is zi “ fjpzσ1 , ..., rσηqwhen lrj ““ i and
η

Ź

k“1

plχk
j
““ σkq, where η is the number of inputs

for component fj and χkj denotes the kth input parameter of component fj . The program output
is produced in line lr.

Example. Assume we only have one component, +. + has two inputs: χ1
` and χ2

`. The output
variable is r`. Further assume that the desired program f has one input Y0 (which we call input0

in the actual program text) and one output r. Given a mapping for location variables of: tlr`
ÞÑ

1, lχ1
`
ÞÑ 0, lχ2

`
ÞÑ 0, lr ÞÑ 1, lY ÞÑ 0u, then the program looks like:

0 z0 :“ input0

1 z1 :“ z0 ` z0
2 return z1

This occurs because the location of the variables used as input to + are both on the same line (0),
which is also the same line as the input to the program (0). lr, the return variable of the program,
is defined on line 1, which is also where the output of the + component is located. (lr`

). We added
the return on line 2 as syntactic sugar.
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