
Lecture Notes: Concolic Testing

17-355/17-665/17-819: Program Analysis (Spring 2020)
Claire Le Goues∗

clegoues@cs.cmu.edu

1 Introduction

We have discussed symbolic execution from two perspectives: as a method for forward verifica-
tion condition generation, as well as a method that generalizes testing. We will continue to focus
on this latter perspective by discussing key approaches that have allowed symbolic execution to
find real bugs in practice.

1.1 Motivation

Companies today spend a huge amount of time and energy testing software to determine whether
it does the right thing, and to find and then eliminate bugs. A major challenge is writing adequate
test cases that cover all of the source code, as well as finding inputs that lead to difficult-to-trigger
corner case defects.

Symbolic execution is a promising approach to exploring different execution paths through
programs. However, it has significant limitations. For paths that are long and involve many
conditions, SMT solvers may not be able to find satisfying assignments to variables that lead to
a test case that follows that path. Other paths may be short but involve computations that are
outside the capabilities of the solver, such as non-linear arithmetic or cryptographic functions. For
example, consider the following function:

testme(int x, int y){
if(bbox(x)==y){

ERROR;
} else {

// OK
}

}

If we assume that the implementation of bbox is unavailable, or is too complicated for a the-
orem prover to reason about, then symbolic execution may not be able to determine whether the
error is reachable.

1.2 Statically modeling functions

We have several options for symbolically executing a program with functions (like the one we
developed for interprocedural dataflow analysis). Inlining is somewhat more practical here as we

∗These notes were developed together with Jonathan Aldrich

1



are not computing fixpoints. We can also simply symbolically execute the called methods, too;
because we are not joining abstract state over multiple possible paths, we do not immediately lose
precision as we would in interprocedural abstract interpretation.

If we continue to operate in a language with pre and postconditions specified at the function
level (as we assumed in Hoare-Style verification), we can also use those to model function be-
havior statically. Assuming pre- and post-conditions encoded in the same expression language as
guards, epre and epost:

xepost,Σy ó apost

xg,Σ, returny ó xapost,Σy
big-return

Question: what about function calls? Note that if the language involves heap-manipulation, this question
becomes more or less difficult!

At some point, however, symbolic execution will reach the “edges” of the application: a li-
brary, system, or assembly code call. For certain libraries, a simpler version is available (such
as libc implemented for embedded systems). Other tools allow custom code models, such as
the implementation of a ramdisk to model kernel fs code. This is of course very labor intensive.
Even when this code can be pulled in and executed symbolically, there are times that the code is
simply too complicated to be tractably reasoned about statically, such as if it involves non-linear
arithmetic.

The challenges of fully statically symbolically executing all code directly motivate concolic test-
ing. Concolic testing combines concrete execution (i.e. testing) with symbolic execution.1

1.3 Goals

We will consider the specific goal of automatically unit testing programs to find assertion viola-
tions and run-time errors such as divide by zero. We can reduce these problems to input genera-
tion: given a statement s in program P , compute input i such that P piq executes s.2 For example,
if we have a statement assert x > 5, we can translate that into the code:

1 if (!(x > 5))
2 ERROR;

Now if line 2 is reachable, the assertion is violated. We can play a similar trick with run-time
errors. For example, a statement involving division x = 3 / i can be placed under a guard:

1 if (i != 0)
2 x = 3 / i;
3 else
4 ERROR;

2 Concolic execution overview

In concolic execution, symbolic execution is used to solve for inputs that lead along a certain
path. However, when a part of the path condition is infeasible for the SMT solver to handle, we
substitute values from a test run of the program. In many cases, this allows us to make progress

1The word concolic is a portmanteau of concrete and symbolic
2This formulation is due to Wolfram Schulte

2



towards covering parts of the code that we could not reach through either symbolic execution or
randomly generated tests.

Consider the testme example from the motivating section. Although symbolic analysis can-
not solve for values of x and y that allow execution to reach the error, we can generate random
test cases. These random test cases are unlikely to reach the error: for each x there is only one y
that will work, and random input generation is unlikely to find it. However, concolic testing can
use the concrete value of x and the result of running bbox(x) in order to solve for a matching y
value. Running the code with the original x and the solution for y results in a test case that reaches
the error.

In order to understand how concolic testing works in detail, consider a more realistic and more
complete example:

1 int double (int v) {
2 return 2*v;
3 }
4

5 void bar(int x, int y) {
6 z = double (y);
7 if (z == x) {
8 if (x > y+10) {
9 ERROR;

10 }
11 }
12 }

We want to test the function bar. We start with random inputs such as x “ 22, y “ 7. We
then run the test case and look at the path that is taken by execution: in this case, we compute
z “ 14 and skip the outer conditional. We then execute symbolically along this path. Given inputs
x “ x0, y “ y0, we discover that at the end of execution z “ 2 ˚ y0, and we come up with a path
condition 2 ˚ y0 ‰ x0.

In order to reach other statements in the program, the concolic execution engine picks a branch
to reverse. In this case there is only one branch touched by the current execution path; this is the
branch that produced the path condition above. We negate the path condition to get 2 ˚ y0 ““ x0
and ask the SMT solver to give us a satisfying solution.

Assume the SMT solver produces the solution x0 “ 2, y0 “ 1. We run the code with that input.
This time the first branch is taken but the second one is not. Symbolic execution returns the same
end result, but this time produces a path condition 2 ˚ y0 ““ x0 ^ x0 ď y0 ` 10.

Now to explore a different path we could reverse either test, but we’ve already explored the
path that involves negating the first condition. So in order to explore new code, the concolic
execution engine negates the condition from the second if statement, leaving the first as-is. We
hand the formula 2 ˚ y0 ““ x0 ^ x0 ą y0 ` 10 to an SMT solver, which produces a solution
x0 “ 30, y0 “ 15. This input leads to the error.

The example above involves no problematic SMT formulas, so regular symbolic execution
would suffice. The following example illustrates a variant of the example in which concolic exe-
cution is essential:

1 int foo(int v) {
2 return v*v%50;
3 }
4

3



5 void baz(int x, int y) {
6 z = foo(y);
7 if (z == x) {
8 if (x > y+10) {
9 ERROR;

10 }
11 }
12 }

Although the code to be tested in baz is almost the same as bar above, the problem is more
difficult because of the non-linear arithmetic and the modulus operator in foo. If we take the
same two initial inputs, x “ 22, y “ 7, symbolic execution gives us the formula z “ py0 ˚ y0q%50,
and the path condition is x0 ‰ py0 ˚ y0q%50. This formula is not linear in the input y0, and so it
may defeat the SMT solver.

We can address the issue by treating foo, the function that includes nonlinear computation,
concretely instead of symbolically. In the symbolic state we now get z “ foopy0q, and for y0 “ 7
we have z “ 49. The path condition becaomse foopy0q ‰ x0, and when we negate this we get
foopy0q ““ x0, or 49 ““ x0. This is trivially solvable with x0 ““ 49. We leave y0 “ 7 as before;
this is the best choice because y0 is an input to foopy0q so if we change it, then setting x0 “ 49 may
not lead to taking the first conditional. In this case, the new test case of x “ 49, y “ 7 finds the
error.

3 Implementation

Ball and Daniel [?] give the following pseudocode for concolic execution (which they call dynamic
symbolic execution):

1 i = an input to program P
2 while defined(i):
3 p = path covered by execution P(i)
4 cond = pathCondition(p)
5 s = SMT(Not(cond))
6 i = s.model()

Broadly, this just systematizes the approach illustrated in the previous section. However, a
number of details are worth noting:

First, when negating the path condition, there is a choice about how to do it. As discussed
above, the usual approach is to put the path conditions in the order in which they were generated
by symbolic execution. The concolic execution engine may target a particular region of code for
execution. It finds the first branch for which the path to that region diverges from the current test
case. The path conditions are left unchanged up to this branch, but the condition for this branch
is negated. Any conditions beyond the branch under consideration are simply omitted. With this
approach, the solution provided by the SMT solver will result in execution reaching the branch
and then taking it in the opposite direction, leading execution closer to the targeted region of code.

Second, when generating the path condition, the concolic execution engine may choose to
replace some expressions with constants taken from the run of the test case, rather than treating
those expressions symbolically. These expressions can be chosen for one of several reasons. First,
we may choose formulas that are difficult to invert, such as non-linear arithmetic or cryptographic
hash functions. Second, we may choose code that is highly complex, leading to formulas that are

4



too large to solve efficiently. Third, we may decide that some code is not important to test, such
as low-level libraries that the code we are writing depends on. While sometimes these libraries
could be analyzable, when they add no value to the testing process, they simply make the formulas
harder to solve than they are when the libraries are analyzed using concrete data.

4 Concolic Path Condition Soundness

Concolic execution is motivated by the presence of subexpressions within a path condition that
are difficult for a SMT solver to reason about. The key idea of concolic execution is to replace these
subexpressions with appropriate concrete values. Where possible, we would like this replacement
to be sound. Intuitively, a replacement is sound if any solution to the new path condition is also
a solution to the old one. This means that even after the substitution, concolic execution will
successfully drive the program down the desired path. Let’s make this idea more formal.

Let g be a negated path condition. Let M be a map from symbolic constants α to integers n.
We write rM sg for the boolean expression we get by substituting all the symbolic constants in g
with the corresponding integer values given in M ; this is only defined if the free symbolic con-
stants FCpgq are the same as domainpMq. We define rM sas similarly for substitution of symbolic
constants with values in arithmetic expressions.

Given g and a map M that represents the inputs to a concrete test case execution, concolic
execution may replace a subexpression as of g with the concrete value n achieved in testing. Note
that n “ rM sas. Let the new guard be g1 “ rn{assg (again, we consider this after negating the last
constraint in the path).

We say that g1 is a sound concolic path condition if for all alternative test inputs M 1 such that
rM 1sg1 is true, we have rextendpM 1,Mqsg true. Here, the extend function extends the symbolic
constants in M 1 with any that are necessary to match the domain of M . More precisely, @α1 P

domainpM 1q, extendpM 1,Mqrα1s “M 1rα1s and @α P pdomainpMq´domainpM 1qq, extendpM 1,Mqrαs “
M rαs.

In class we saw an example of a path condition g and a sound concolic replacement g1 for it.
In particular, g was x0 ““ py0 ˚ y0q%50 after negation and g1 was x0 ““ 49 after negation. This is
trivially sound because the only solution is x0 ““ 49, which when extended with y0 ““ 7 from the
original test case yields a new test input that fulfills the original path condition x0 ““ py0˚y0q%50.

As an exercise:

• Give an example path condition g, test input M , and concolic path condition g1 resulting
from replacing a subexpression as of g with a concrete value n “ rM sas, such that g1 is
unsound.

• Witness the unsoundness by also providing a test input M 1 that satisfies g1 but not g.

• Give a condition on g,M, g1 and/or as that is sufficient to ensure that g1 is sound.

• Prove that your condition is sufficient for soundness.

5 Acknowledgments

The structure of these notes and the examples are adapted from a presentation by Koushik Sen.

5


