
Lecture Notes: Axiomatic Semantics and
Hoare-style Verification

17-355/17-665/17-819: Program Analysis (Spring 2020)
Claire Le Goues

clegoues@cs.cmu.edu

It has been found a serious problem to define these languages [ALGOL, FORTRAN,
COBOL] with sufficient rigor to ensure compatibility among all implementations...One
way to achieve this would be to insist that all implementations of the language shall
satisfy the axioms and rules of inference which underlie proofs of properties of pro-
grams expressed in the language. In effect, this is equivalent to accepting the axioms
and rules of inference as the ultimately definitive specification of the meaning of the
language.

C.A.R Hoare, An Axiomatic Basis for Computer Programming,1969

So far in this course we have largely represented and reasoned about programs (and analysis
of those programs) in terms of operational semantics, which gives meaning to programs based on
what happens when we execute them. Now, we turn our attention to a different kind of represen-
tation, which in turn enables a different kind of static reasoning about program correctness.

1 Axiomatic Semantics

Axiomatic semantics (or Hoare-style logic) defines the meaning of a statement in terms of its effects
on assertions of truth that can be made about the associated program. This provides a formal
system for reasoning about correctness. An axiomatic semantics fundamentally consists of: (1)
a language for stating assertions about programs (where an assertion is something like “if this
function terminates, x > 0 upon termination”), coupled with (2) rules for establishing the truth of
assertions. Various logics have been used to encode such assertions; for simplicity, we will begin
by focusing on first-order logic.

In this system, a Hoare Triple encodes such assertions:

{P} S {Q}

P is the precondition, Q is the postcondition, and S is a piece of code of interest. Relating this
back to our earlier understanding of program semantics, this can be read as “if P holds in some
state E and if 〈S,E〉 ⇓ E′, then Q holds in E′.” We distinguish between partial ({P} S {Q}) and
total ([P] S [Q]) correctness by saying that total correctness means that, given precondition P , S
will terminate, and Q will hold; partial correctness does not make termination guarantees. We
primarily focus on partial correctness.

1

1.1 Assertion judgements using operational semantics

Consider a simple assertion language adding first-order predicate logic to WHILE expressions:

A ::= true | false | e1 = e2 | e1 ≥ e2 | A1 ∧A2

| A1 ∨A2 | A1 ⇒ A2 | ∀x.A | ∃x.A

Note that we are somewhat sloppy in mixing logical variables and program variables; all
WHILE variables implicitly range over integers, and all WHILE boolean expressions are also as-
sertions.

We now define an assertion judgement E � A , read “A is true in E”. The � judgment is de-
fined inductively on the structure of assertions, and relies on the operational semantics of WHILE

arithmetic expressions. For example:

E � true always
E � e1 = e2 iff 〈e1, E〉 ⇓ n = 〈e2, E〉 ⇓ n
E � e1 ≥ e2 iff 〈e1, E〉 ⇓ n ≥ 〈e2, E〉 ⇓ n
E � A1 ∧A2 iff E � A1 and E � A2

...
E � ∀x.A iff ∀n ∈ Z.E[x := n] � A
E � ∃x.A iff ∃n ∈ Z.E[x := n] � A

Now we can define formally the meaning of a partial correctness assertion � {P} S {Q}:

∀E ∈ E .∀E′ ∈ E .(E � P ∧ 〈S,E〉 ⇓ E′)⇒ E′ � Q

Question: What about total correctness?
This gives us a formal, but unsatisfactory, mechanism to decide � {P} S {Q}. By defining

the judgement in terms of the operational semantics, we practically have to run the program to
verify an assertion! It’s also awkward/impossible to effectively verify the truth of a ∀x.A assertion
(check every integer?!). This motivates a new symbolic technique for deriving valid assertions
from others that are known to be valid.

1.2 Derivation rules for Hoare triples

We write ` A (read “we can prove A”) when A can be derived from basic axioms. The derivation
rules for ` A are the usual ones from first-order logic with arithmetic, like (but obviously not
limited to):

` A ` B
` A ∧B

and

We can now write ` {P} S {Q} when we can derive a triple using derivation rules. There is
one derivation rule for each statement type in the language (sound familiar?):

` {P} skip {P} skip ` {[e/x]P} x:=e {P}
assign

` {P} S1 {P ′} ` {P ′} S2 {Q}
` {P} S1; S2 {Q}

seq
` {P ∧ b}S1{Q} ` {P ∧ ¬b} S2 {Q}

` {P} if b then S1 else S2 {Q}
if

2

Question: What can we do for while?

There is also the rule of consequence:

` P ′ ⇒ P ` {P} S {Q} ` Q⇒ Q′

` {P ′} S {Q′}
consq

This rule is important because it lets us make progress even when the pre/post conditions
in our program don’t exactly match what we need (even if they’re logically equivalent) or are
stronger or weaker logically than ideal.

We can use this system to prove that triples hold. Consider {true} x := e {x = e}, using (in
this case) the assignment rule plus the rule of consequence:

` true⇒ e = e {e = e} x := e {x = e}
` {true}x := e{x = e}

A system of axiomatic semantics is sound if everything we can prove is also true, that is:
if ` {P}S{Q} then � {P}S{Q}. This can be proven via simultaneous induction on the structure
of the operational semantics derivation and the axiomatic semantics proof; will not conduct this
proof in these notes. Intuitively, it expresses that the axiomatic proof we can derive using these
rules is equivalent to the operational semantics derivation

A system of axiomatic semantics is complete if we can prove all true things: if � {P}S{Q} then `
{P}S{Q} The system we have outlined is relatively complete (that is, as complete as the underly-
ing logic). We now move to showing how to (soundly/completely) prove properties of programs
using this style of semantics.

2 Proofs of a Program

Hoare-style verification is based on the idea of a specification as a contract between the imple-
mentation of a function and its clients. The specification consists of the precondition and a post-
condition. The precondition is a predicate describing the condition the code/function relies on for
correct operation; the client must fulfill this condition. The postcondition is a predicate describing
the condition the function establishes after correctly running; the client can rely on this condition
being true after the call to the function.

Note that if a client calls a function without fulfilling its precondition, the function can behave
in any way at all and still be correct. Therefore, if a function must be robust to errors, the precon-
dition should include the possibility of erroneous input, and the postcondition should describe
what should happen in case of that input (e.g. an exception being thrown).

The goal in Hoare-style verification is thus to (statically!) prove that, given a pre-condition,
a particular post-condition will hold after a piece of code executes. We do this by generating a
logical formula known as a verification condition, constructed such that, if true, we know that the
program behaves as specified. The general strategy for doing this, introduced by Dijkstra, relies
on the idea of a weakest precondition of a statement with respect to the desired post-condition. We
then show that the given precondition implies it. However, loops, as ever, complicate this strategy.

3

2.1 Strongest postconditions and weakest pre-conditions

We can write any number of perfectly valid Hoare triples. Consider the Hoare triple {x = 5} x :=
x ∗ 2 {x > 0}. This triple is clearly correct, because if x = 5 and we multiply x by 2, we get x = 10
which clearly implies that x > 0. However, although correct, this Hoare triple is not a precise as
we might like. Specifically, we could write a stronger postcondition, i.e. one that implies x > 0.
For example, x > 5∧x < 20 is stronger because it is more informative; it pins down the value of x
more precisely than x > 0. The strongest postcondition possible is x = 10; this is the most useful
postcondition. Formally, if {P} S {Q} and for all Q′ such that {P} S {Q′}, Q ⇒ Q′, then Q is the
strongest postcondition of S with respect to P .

We can compute the strongest postcondition for a given statement and precondition using the
function sp(S, P). Consider the case of a statement of the form x := E. If the condition P held
before the statement, we now know that P still holds and that x = E—where P and E are now in
terms of the old, pre-assigned value of x. For example, if P is x+y = 5, and S is x := x+z, then we
should know that x′ + y = 5 and x = x′ + z, where x′ is the old value of x. The program semantics
doesn’t keep track of the old value of x, but we can express it by introducing a fresh, existentially
quantified variable x′. This gives us the following strongest postcondition for assignment:1

sp(x := E,P) = ∃x′.[x′/x]P ∧ x = [x′/x]E

While this scheme is workable, it is awkward to existentially quantify over a fresh variable
at every statement; the formulas produced become unnecessarily complicated, and if we want to
use automated theorem provers, the additional quantification tends to cause problems. Dijkstra
proposed reasoning instead in terms of weakest preconditions, which turns out to work better. If
{P} S {Q} and for all P ′ such that {P ′} S {Q}, P ′ ⇒ P , then P is the weakest precondition
wp(S,Q) of S with respect to Q.

We can define a function yielding the weakest precondition inductively, following the Hoare
rules. For for assignments, sequences, and if statements, this yields:

wp(x := E,P) = [E/x]P

wp(S; T,Q) = wp(S, wp(T,Q))

wp(if B then S else T,Q) = B ⇒ wp(S,Q) ∧ ¬B ⇒ wp(T,Q)

2.2 Loops

As usual, things get tricky when we get to loops. Consider:

{P}while(i < x) do f = f ∗ i; i := i+ 1 done{f = x!}

What is the weakest precondition here? Fundamentally, we need to prove by induction that the
property we care about will generalize across an arbitrary number of loop iterations. Thus, P is the
base case, and we need some inductive hypothesis that is preserved when executing loop body an
arbitrary number of times. We commonly refer to this hypothesis as a loop invariant, because it rep-
resents a condition that is always true (i.e. invariant) before and after each execution of the loop.

Computing weakest preconditions on loops is very difficult on real languages. Instead, we
assume the provision of that loop invariant. A loop invariant must fulfill the following conditions:

1Recall that the operation [x′/x]E denotes the capture-avoiding substitution of x′ for x in E; we rename bound
variables as we do the substitution so as to avoid conflicts.

4

• P ⇒ I : The invariant is initially true. This condition is necessary as a base case, to establish
the induction hypothesis.

• {Inv∧B} S {Inv} : Each execution of the loop preserves the invariant. This is the inductive
case of the proof.

• (Inv ∧ ¬B) ⇒ Q : The invariant and the loop exit condition imply the postcondition. This
condition is simply demonstrating that the induction hypothesis/loop invariant we have
chosen is sufficiently strong to prove our postcondition Q.

The procedure outlined above only verifies partial correctness, because it does not reason
about how many times the loop may execute. Verifying full correctness involves placing an upper
bound on the number of remaining times the loop body will execute, typically called a variant
function, written v, because it is variant: we must prove that it decreases each time we go through
the loop. We mention this for the interested reader; we will not spend much time on it.

2.3 Proving programs

Assume a version of WHILE that annotates loops with invariants: whileinv b do S. Given such a
program, and associated pre- and post-conditions:

{P} Sinv {Q}

The proof strategy constructs a verification condition V C(Sannot, Q) that we seek to prove true
(usually with the help of a theorem prover). V C is guaranteed to be stronger than wp(Sannot, Q)
but still weaker than P : P ⇒ V C(Sannot, Q)⇒ wp(Sannot, Q) We compute V C using a verification
condition generation procedure V CGen, which mostly follows the definition of the wp function
discussed above:

V CGen(skip, Q) = Q
V CGen(S1;S2, Q) = V CGen(S1, V CGen(S2, Q))
V CGen(if b then S1 else S2, Q) = b⇒ V CGen(S1, Q) ∧ ¬b⇒ V CGen(S2, Q)
V CGen(x := e,Q) = [e/x]Q

The one major point of difference is in the handling of loops:

V CGen(whileinv e do S,Q) = Inv ∧ (∀x1...xn.Inv ⇒ (e⇒ V CGen(S, Inv) ∧ ¬e⇒ Q))

To see this in action, consider the following WHILE program:

r := 1;
i := 0;
while i < m do

r := r ∗ n;
i := i+ 1

We wish to prove that this function computes the nth power of m and leaves the result in r.
We can state this with the postcondition r = nm.

5

Next, we need to determine a precondition for the program. We cannot simply compute it
with wp because we do not yet know the loop invariant is—and in fact, different loop invariants
could lead to different preconditions. However, a bit of reasoning will help. We must have m ≥ 0
because we have no provision for dividing by n, and we avoid the problematic computation of 00

by assuming n > 0. Thus our precondition will be m ≥ 0 ∧ n > 0.
A good heuristic for choosing a loop invariant is often to modify the postcondition of the loop

to make it depend on the loop index instead of some other variable. Since the loop index runs
from i to m, we can guess that we should replace m with i in the postcondition r = nm. This gives
us a first guess that the loop invariant should include r = ni.

This loop invariant is not strong enough, however, because the loop invariant conjoined with
the loop exit condition should imply the postcondition. The loop exit condition is i ≥ m, but we
need to know that i = m. We can get this if we add i ≤ m to the loop invariant. In addition, for
proving the loop body correct, we will also need to add 0 ≤ i and n > 0 to the loop invariant.
Thus our full loop invariant will be r = ni ∧ 0 ≤ i ≤ m ∧ n > 0.

Our next task is to use weakest preconditions to generate proof obligations that will verify the
correctness of the specification. We will first ensure that the invariant is initially true when the
loop is reached, by propagating that invariant past the first two statements in the program:

{m ≥ 0 ∧ n > 0}
r := 1;
i := 0;
{r = ni ∧ 0 ≤ i ≤ m ∧ n > 0}

We propagate the loop invariant past i := 0 to get r = n0 ∧ 0 ≤ 0 ≤ m ∧ n > 0. We propagate
this past r := 1 to get 1 = n0 ∧ 0 ≤ 0 ≤ m ∧ n > 0. Thus our proof obligation is to show that:

m ≥ 0 ∧ n > 0⇒ 1 = n0 ∧ 0 ≤ 0 ≤ m ∧ n > 0

We prove this with the following logic:

m ≥ 0 ∧ n > 0 by assumption
1 = n0 because n0 = 1 for all n > 0 and we know n > 0
0 ≤ 0 by definition of ≤
0 ≤ m because m ≥ 0 by assumption
n > 0 by the assumption above
1 = n0 ∧ 0 ≤ 0 ≤ m ∧ n > 0 by conjunction of the above

To show the loop invariant is preserved, we have:

{r = ni ∧ 0 ≤ i ≤ m ∧ n > 0 ∧ i < m}
r := r ∗ n;
i := i+ 1;
{r = ni ∧ 0 ≤ i ≤ m ∧ n > 0}

We propagate the invariant past i := i+1 to get r = ni+1∧0 ≤ i+1 ≤ m∧n > 0. We propagate
this past r := r ∗ n to get: r ∗ n = ni+1 ∧ 0 ≤ i+ 1 ≤ m ∧ n > 0. Our proof obligation is therefore:

r = ni ∧ 0 ≤ i ≤ m ∧ n > 0 ∧ i < m
⇒ r ∗ n = ni+1 ∧ 0 ≤ i+ 1 ≤ m ∧ n > 0

We can prove this as follows:

6

r = ni ∧ 0 ≤ i ≤ m ∧ n > 0 ∧ i < m by assumption
r ∗ n = ni ∗ n multiplying by n
r ∗ n = ni+1 definition of exponentiation
0 ≤ i+ 1 because 0 ≤ i
i+ 1 < m+ 1 by adding 1 to inequality
i+ 1 ≤ m by definition of ≤
n > 0 by assumption
r ∗ n = ni+1 ∧ 0 ≤ i+ 1 ≤ m ∧ n > 0 by conjunction of the above

Last, we need to prove that the postcondition holds when we exit the loop. We have already
hinted at why this will be so when we chose the loop invariant. However, we can state the proof
obligation formally:

r = ni ∧ 0 ≤ i ≤ m ∧ n > 0 ∧ i ≥ m
⇒ r = nm

We can prove it as follows:

r = ni ∧ 0 ≤ i ≤ m ∧ n > 0 ∧ i ≥ m by assumption
i = m because i ≤ m and i ≥ m
r = nm substituting m for i in assumption

7

