
Lecture Notes: Advanced Interprocedural Analysis: Pointer
Analysis and Object-Oriented Call Graph Construction

17-355/17-665/17-819: Program Analysis (Spring 2020)
Claire Le Goues∗

clegoues@cs.cmu.edu

We have successfully extended our interprocedural dataflow analysis framework to a small
functional programming language, which required us to reason explicitly about which functions
might be called, where. This provides insight into similar problems in other programming paradigms,
namely dynamic dispatch. Precisely addressing dynamic dispatch relies on techniques for pointer
analysis, which establishes which pointers can point to which locations. Analyses that address
real programming languages (whether they use dynamic dispatch or not) must address pointers,
because ignoring them dramatically impacts analysis precision. Thus, in the interest of adapting
our framework to real languages, we turn our attention to these issues.

1 Pointer Analysis

Pointers are variables whose value refers to another value elsewhere in memory, by storing the
address of that stored value. To illustrate why they matter in analyzing real programs, consider
constant-propagation analysis of the following program:

1 : z :“ 1
2 : p :“ &z
3 : ˚p :“ 2
4 : print z

To analyze this program correctly we must be aware that at instruction 3, p points to z. If this
information is available we can use it in a flow function as follows:

fCP v˚p :“ ywpσq “ σrz ÞÑ σpyq | z P must-point-toppqs

When we know exactly what a variable x points to, we have must-point-to information, and
we can perform a strong update of the target variable z, because we know with confidence that
assigning to ˚p assigns to z. A technicality in the rule is quantifying over all z such that p must
point to z. How is this possible? It is not possible in C or Java; however, in a language with pass-
by-reference, for example C++, it is possible that two names for the same location are in scope.

Of course, it is also possible to be uncertain to which of several distinct locations p points:

∗These notes were developed together with Jonathan Aldrich

1



1 : z :“ 1
2 : if pcondq p :“ &y else p :“ &z
3 : ˚p :“ 2
4 : print z

Now constant propagation analysis must conservatively assume that z could hold either 1 or
2. We can represent this with a flow function that uses may-point-to information:

fCP v˚p :“ ywpσq “ σrz ÞÑ σpzq \ σpyq | z P may-point-toppqs

1.1 Andersen’s Points-To Analysis

Two common kinds of pointer analysis are alias analysis and points-to analysis. Alias analysis
computes sets S holding pairs of variables pp, qq, where p and q may (or must) point to the same
location. Points-to analysis computes the set points-toppq, for each pointer variable p, where the
set contains a variable x if p may (or must) point to the location of the variable x. We will focus
primarily on points-to analysis, beginning with a simple but useful approach originally proposed
by Andersen.1

Our initial setting will be C programs. We are interested in analyzing instructions that are
relevant to pointers in the program. Ignoring for the moment memory allocation and arrays, we
can decompose all pointer operations in C into four types:

I ::“ ...
| p :“ &x taking the address of a variable
| p :“ q copying a pointer from one variable to another
| ˚p :“ q assigning through a pointer
| p :“ ˚q dereferencing a pointer

Andersen’s points-to analysis is a context-insensitive interprocedural analysis. It is also a flow-
insensitive analysis, that is an analysis that does not consider program statement order. Context-
and flow-insensitivity improve analysis performance, as precise pointer analysis can be notori-
ously expensive.

We will formulate Andersen’s analysis by generating set constraints which can later be pro-
cessed by a set constraint solver, much like we did for CFA. Because the analysis is flow-insensitive,
we do not care what order the instructions in the program come in; we simply generate a set of
constraints and solve them. Constraint generation for each statement works by these rules:

vp :“ &xw ãÑ lx P p
address-of

vp :“ qw ãÑ p Ě q
copy

v˚p :“ qw ãÑ ˚p Ě q
assign

vp :“ ˚qw ãÑ p Ě ˚q
dereference

1PhD thesis: “Program Analysis and Specialization for the C Programming Language.”

2



The first rule states that a constant location lx, representation the address of x, is in the set of
location pointed to by p. The second rule states that the set of locations pointed to by p must be a
superset of those pointed to by q. The last two rules state the same, but take into account that one
or the other pointer is dereferenced. Note that if Andersen’s algorithm says that the set p points
to only one location lz , we have must-point-to information, whereas if the set p contains more than
one location, we have only may-point-to information.

A number of specialized set constraint solvers exist, and constraints in the form above can be
translated into input for them.2 We will treat constraint-solving abstractly using the following
constraint propagation rules:

p Ě q lx P q

lx P p
copy

˚p Ě q lr P p lx P q

lx P r
assign

p Ě ˚q lr P q lx P r

lx P p
dereference

We can now apply Andersen’s points-to analysis to the programs above. We can also apply it
to programs with dynamic memory allocation, such as:

1 : q :“ mallocpq
2 : p :“ mallocpq
3 : p :“ q
4 : r :“ &p
5 : s :“ mallocpq
6 : ˚r :“ s
7 : t :“ &s
8 : u :“ ˚t

The analysis is run the same way, but we treat the memory cell allocated at each malloc or new
statement as an abstract location labeled by the location n of the allocation point:

vn: p :“ mallocpqw ãÑ ln P p
malloc

We must be careful because a malloc statement can be executed more than once, and each time
it executes, a new memory cell is allocated. Unless we have some other means of proving that
the malloc executes only once, we must assume that if some variable p only points to one abstract
malloc’d location ln, that is still may-alias information (i.e. p points to only one of the many actual
cells allocated at the given program location) and not must-alias information.

Efficiency. Analyzing the efficiency of Andersen’s algorithm, we can see that all constraints can
be generated in a linear Opnq pass over the program. The solution size is Opn2q, because each of
the Opnq variables defined in the program could potentially point to Opnq other variables.

2Note that the dereference operation (the ˚ in ˚p Ě q) is not standard, but can be encoded,

3



We can derive the execution time as follows:3 There are Opnq flow constraints generated of the
form p Ě q, ˚p Ě q, or p Ě ˚q. How many times could a constraint propagation rule fire for each
flow constraint? For a p Ě q constraint, the rule may fire at most Opnq times, because there are
at most Opnq premises of the proper form lx P p. However, a constraint of the form p Ě ˚q could
cause Opn2q rule firings, because there are Opnq premises each of the form lx P p and lr P q. With
Opnq constraints of the form p Ě ˚q and Opn2q firings for each, we have Opn3q constraint firings
overall. A similar analysis applies for ˚p Ě q constraints. McAllester’s theorem states that the
analysis with Opn3q rule firings can be implemented in Opn3q time. Thus we have derived that
Andersen’s algorithm is cubic in the size of the program, in the worst case.

Interestingly, Andersen’s algorithm can be executed in Opn2q time for k-sparse programs.4 The
k-sparse assumption requires that at most k statements dereference each variable, and that the flow
graph is sparse. The publication showing this result also showed that typical Java programs are
k-sparse, and that Andersen’s algorithm scales quadratically in practice.

1.2 Field Sensitivity

What happens when we have a pointer to a struct in C, or an object in an object-oriented language?
In this case, we would like the pointer analysis to tell us what each field in the struct or object
points to. A simple solution is to be field-insensitive, treating all fields in a struct as equivalent.
Thus if p points to a struct with two fields f and g, and we assign:

1 : p.f :“ &x
2 : p.g :“ &y

A field-insensitive analysis would tell us (imprecisely) that p.f could point to y. We can modify
the rules above by treating any field dereference or field assignment to p.f as a pointer dereference
˚p. Essentially, you can think of this as just considering all fields to be named ˚.

To be more precise, we can instead track the contents each field of each abstract location sepa-
rately. In the discussion below, we assume a Java-like setting, in which all objects are allocated on
the heap and where we cannot take the address of a field. A slightly more complicated variant of
this scheme works in C-like languages.

We will use the malloc and copy rules unchanged from above.5 We drop the assign and derefer-
ence rules, and replace them with:

vp :“ q.fw ãÑ p Ě q.f
field-read

vp.f :“ qw ãÑ p.f Ě q
field-assign

Now assume that objects (e.g. in Java) are represented by abstract locations l. We will have
two forms of basic facts. The first is the same as before: ln P p, where ln is an object allocated in a
new statement at line n. The second basic fact is ln P lm.f , which states that the field f of the object
represented by lm may point to an object represented by ln.

3David A. McAllester. 1999. On the Complexity Analysis of Static Analyses. In Proceedings of the 6th International
Symposium on Static Analysis (SAS 99): 312329.

4Manu Sridharan and Stephen J. Fink. 2009. The Complexity of Andersens Analysis in Practice. In Proceedings of
the 16th International Symposium on Static Analysis (SAS 09): 205221.

5In Java, the new expression plays the role of malloc

4



We can now process field constraints with the following rules:

p Ě q.f lq P q lf P lq.f

lf P p
field-read

p.f Ě q lp P p lq P q

lq P lp.f
field-assign

If we run this analysis on the code above, we find that it can distinguish that p.f points to x
and p.g points to y.

1.3 Steensgaard’s Points-To Analysis

For very large programs, a quadratic-in-practice algorithm is too inefficient. Steensgaard proposed
an pointer analysis algorithm that operates in near-linear time, supporting essentially unlimited
practical scalability.

The first challenge in designing a near-linear time points-to analysis is to represent the results
in linear space. This is nontrivial because over the course of program execution, any given pointer
p could potentially point to the location of any other variable or pointer q. Representing all of
these pointers explicitly will inherently take Opn2q space.

The solution Steensgaard found is based on using constant space for each variable in the pro-
gram. His analysis associates each variable p with an abstract location named after the variable.
Then, it tracks a single points-to relation between that abstract location p and another one q, to
which it may point. Now, it is possible that in some real program p may point to both q and some
other variable r. In this situation, Steensgaard’s algorithm unifies the abstract locations for q and
r, creating a single abstract location representing both of them. Now we can track the fact that p
may point to either variable using a single points-to relationship.

For example, consider the program to the left, and the graph that Andersen’s points-to analysis
would produce (right):

1 : p :“ &x
2 : r :“ &p
3 : q :“ &y
4 : s :“ &q
5 : r :“ s

But in Steensgaard’s setting, when we discover that r could point both to q and to p, we must
merge q and p into a single node:

5



x

pq

r

y

s

Notice that we have lost precision: by merging the nodes for p and q our graph now implies
that s could point to p, which is not the case in the actual program. But we are not done. Now
pq has two outgoing arrows, so we must merge nodes x and y. The final graph produced by
Steensgaard’s algorithm is therefore:

xy

pq

r s

We study Steensgaard’s analysis more precisely by specifying a simplified version that ignores
function pointers:

vp :“ qw ãÑ joinp˚p, ˚qq
copy

vp :“ &xw ãÑ joinp˚p, xq
address-of

vp :“ ˚qw ãÑ joinp˚p, ˚˚qq
dereference

v˚p :“ qw ãÑ joinp˚˚p, ˚qq
assign

With each abstract location p, we associate the abstract location that p points to, denoted ˚p.
Abstract locations are implemented as a union-find6 data structure so that we can merge two
abstract locations efficiently. In the rules above, we implicitly invoke find on an abstract location
before calling join on it, or before looking up the location it points to.

The join operation essentially implements a union operation on the abstract locations. How-
ever, since we are tracking what each abstract location points to, we must update this information
also. The algorithm to do so is as follows:

join(`1, `2)
if (find(`1) == find(`2))

return
n1 Ð ˚`1
n2 Ð ˚`2
union(`1, `2)
join(n1, n2)

6See any algorithms textbook

6



Once again, we implicitly invoke find on an abstract location before comparing it for equality,
looking up the abstract location it points to, or calling join recursively.

As an optimization, Steensgaard does not perform the join if the right hand side is not a pointer.
For example, if we have an assignment vp :“ qw and q has not been assigned any pointer value so
far in the analysis, we ignore the assignment. If later we find that q may hold a pointer, we must
revisit the assignment to get a sound result.

Steensgaard illustrated his algorithm using the following program, and the graph the algo-
rithm produces:

1 : a :“ &x
2 : b :“ &y
3 : if p then
4 : y :“ &z
5 : else
6 : y :“ &x
7 : c :“ &y

Efficiency. Rayside illustrates how Andersen must sometimes do more work than Steensgaard:

1 : q :“ &x
2 : q :“ &y
3 : p :“ q
4 : q :“ &z

After processing the first three statements, Steensgaard’s algorithm will have unified variables
x and y, with p and q both pointing to the unified node. Andersen’s algorithm will have both p
and q pointing to both x and y. When the fourth statement is processed, Steensgaard’s algorithm
does only a constant amount of work, merging z in with the already-merged xy. On the other
hand, Andersen’s algorithm must not just create a points-to relation from q to z, but must also
propagate that relationship to p. It is this additional propagation step that results in the significant
performance difference between these algorithms.7

Analyzing Steensgaard’s pointer analysis for efficiency, we observe that each of n statements
in the program is processed once. The processing is linear, except for find operations on the union-
find data structure (which may take amortized time Opαpnqq each) and the join operations. We
note that in the join algorithm, the short-circuit test will fail at most Opnq times—at most once for
each variable in the program. Each time the short-circuit fails, two abstract locations are unified,
at cost Opαpnqq. The unification assures the short-circuit will not fail again for one of these two
variables. Because we have at most Opnq operations and the amortized cost of each operation
is at most Opαpnqq, the overall running time of the algorithm is near linear: Opn ˚ αpnqq. Space
consumption is linear, as no space is used beyond that used to represent abstract locations for all
the variables in the program text.

7For fun, try adding a new statement r :“ p after statement 3. Then z has to be propagated to the points-to sets of
both p and r. In general, the number of propagations can be linear in the number of copies and the number of address-of
operators, which makes it quadratic overall even for programs in the simple form above.

7



Based on this asymptotic efficiency, Steensgaard’s algorithm was run on a 1 million line pro-
gram (Microsoft Word) in 1996; this was an order of magnitude greater scalability than other
pointer analyses known at the time.

Steensgaard’s pointer analysis is field-insensitive; making it field-sensitive would mean that it
is no longer linear.

2 Dynamic dispatch

Dynamic dispatch is the process of selecting which implementation of a method or function should
be called at runtime; it is a defining characteristic object-oriented programming languages and
systems, but is not limited to them (e.g., calling through function pointers in C). To construct a
precise call graph in such languages, an analysis must determine the type of the receiver object
is at each call site. Flow analysis techniques similar to points-to analysis can be used to compute
this information, but using an interprocedural flow analysis off the shelf requires a call graph,
which is exactly what we are trying to construct. Therefore, object-oriented call graph construction
algorithms must simultaneously build a call graph and compute dataflow information describing
the types of the objects to which each variable could point.

2.1 Simple approaches

Before examining a full-fledged dataflow analysis-based call graph construction algorithm, we
will consider two simpler approaches that do not require flow analysis. These approaches have
the side benefit of being very efficient, and so are used in settings such as JIT compilers where
analysis time is scarce.

The simplest approach, class hierarchy analysis, uses the type of a variable, together with the
class hierarchy, to determine what types of object the variable could point to. Unsurprisingly, this
is very imprecise, but can be computed very efficiently in Opn˚ tq time, because it visits n call sites
and at each call site traverses a subtree of size t of the class hierarchy.

An improvement to class hierarchy analysis is rapid type analysis, which eliminates from the
hierarchy classes that are never instantiated. The analysis iteratively builds a set of instantiated
types, method names invoked, and concrete methods called. Initially, it assumes that main is the
only concrete method that is called, and that no objects are instantiated. It then analyzes concrete
methods known to be called, one by one. When a method name is invoked, it is added to the
list, and all concrete methods with that name defined within (or inherited by) types known to be
instantiated are added to the called list. When an object is instantiated, its type is added to the list
of instantiated types, and all its concrete methods that have a method name that is invoked are
added to the called list. This proceeds iteratively until a fixed point is reached, at which point the
analysis knows all of the object types that may actually be created at run time.

Rapid type analysis can be considerably more precise than class hierarchy analysis in programs
that use libraries that define many types, only a few of which are used by the program. It remains
extremely efficient, because it only needs to traverse the program once (in Opnq time) and then
build the call graph by visiting each of n call sites and considering a subtree of size t of the class
hierarchy, for a total of Opn ˚ tq time.

2.2 0-CFA Style Object-Oriented Call Graph Construction

Object-oriented call graphs can also be constructed using a pointer analysis such as Andersen’s
algorithm, either context-insensitive or context-sensitive. The context-sensitive versions are called

8



k-CFA by analogy with control-flow analysis for functional programs. The context-insensitive
version is called 0-CFA for the same reason. Essentially, the analysis proceeds as in Andersen’s
algorithm, but the call graph is built up incrementally as the analysis discovers the types of the
objects to which each variable in the program can point.

Even 0-CFA analysis can be considerably more precise than Rapid Type Analysis. For example,
in the program below, RTA would assume that any implementation of foo() could be invoked at
any program location, but 0-CFA can distinguish the two call sites:

class A { A foo(A x) { return x; } }
class B extends A { A foo(A x) { return new D(); } }
class D extends A { A foo(A x) { return new A(); } }
class C extends A { A foo(A x) { return this; } }

// in main()
A x = new A();
while (...)

x = x.foo(new B()); // may call A.foo, B.foo, or D.foo
A y = new C();
y.foo(x); // only calls C.foo

9


