
Lecture Notes:
Control Flow Analysis for Functional Languages

17-355/17-665/17-819: Program Analysis (Spring 2020)
Claire Le Goues∗

clegoues@cs.cmu.edu

We have made progress by expanding our dataflow analysis to handle programs with mul-
tiple procedures. However, the approach we’ve developed relies on a number of simplifying
assumptions. Notably, in WHILE3ADDR with functions, it is always easy to tell which function is
being called at any particular callsite. This is often not the case in real languages. Object-oriented
languages (or any language with dynamic dispatch) and functional languages challenge this as-
sumption: in both cases, it can be difficult to tell which function is being called, statically.

We therefore turn now to the general problem of statically analyzing functional languages.
In doing so, we will see techniques for addressing this general question of determining control
flow (or call graphs), and generalize several of our ideas about dataflow analysis (like the idea of
a program point). Additionally, analyzing functional languages motivates and provides a good
introduction to constraint-based analyses. We will additionally expand on a number of these ideas
in subsequent classes.

1 A simple, labeled, functional language

Consider an idealized functional language based on the lambda calculus, similar to the core of
Scheme or ML, with the additional property that we label all expressions:

e P Expressions ...or labelled terms
t P Term ...or unlabelled expressions
l P L labels

e ::“ tl

t ::“ λx.e
| x
| pe1q pe2q
| let x “ e1 in e2
| if e0 then e1 else e2
| n | e1 ` e2 | ...

The grammar includes a definition of an anonymous function λx.e, where x is the function
argument and e is the function body.1 The function can include any of the other types of ex-

∗These notes were developed together with Jonathan Aldrich
1The formulation in PPA also includes a syntactic construct for explicitly recursive functions. The ideas extend

naturally, but we’ll follow the simpler syntax for expository purposes.

1

pressions, such as variables x or function calls pea1qpe
b
2q,

2 where e1 is the function to be invoked
and e2 is passed to that function as an argument (labeled a and b respectively). We evaluate a
function call pλx.eqpvq by substituting the argument v for all occurrences of x in e. For example,
ppλx.pxa ` 1bqcqdp3qeqg evaluates to 3 ` 1, which of course evaluates to 4. A more interesting ex-
ample is pppλf.pfa 3bqcqepλx.pxg ` 1hqiqjqk, which first substitutes the argument for f , yielding
pλx.xg ` 1hqi 3. Then we invoke the function, getting 3` 1 which again evaluates to 4.

Note that this grammar associates each expression with a label l P L; this is important to
keeping track of analysis information (analogous to program points in our imperative analysis),
as we discuss next.

2 Simple Control Flow Analysis

Static analysis can be just as useful in this type of language as in imperative languages, but im-
mediate complexities arise. For example: what is a program point in a language without obvious
predecessors or successors? Computation is intrinsically nested. Second, because functions are
first-class entities that can be passed around as variables, it’s not obvious which function is being
applied where. We need some way to figure this out, because the value a function returns (which
we may hope to track, such as through constant propagation analysis) will inevitably depend on
which function is called, as well as its arguments.

Control flow analysis (CFA)3 seeks to statically determine which functions could be associated
with which variables. Because functional languages are not based on statements but rather ex-
pressions, it is appropriate to reason about both the values of variables and the values expressions
evaluate to.

2.1 0-CFA

We will start by discussing the simplest form of a CFA, called 0-CFA. This is the simplest form be-
cause it is context-insensitive (the “0-” label indicates no context is taken into account). We track
analysis information for variables and labels, in lieu of the explicit program points in the control
flow graphs we used before. Although this may feel like a big change, this approach actually
connects directly to what we’ve been doing in imperative dataflow analysis so far. Dataflow anal-
ysis is a type of abstract interpretation, an overall framework or theory of sound approximation of
program semantics. At a high level and separate from a particular program definition, abstract
interpretation associates labels with properties by manipulating sets of states using monotonic func-
tions over ordered sets as defined by lattices. In our formulation for imperative languages, we
implicitly associated labels with the program points between nodes in a control flow graph.

That said, our analysis information σ maps each variable and label to a lattice value. 0-CFA
analysis is only concerned with tracking which functions are possibly associated with each loca-
tion or variable (we will add dataflow information later), and so the abstract domain is as follows:

σ P VarY LÑ L L “ J` Ppλx.eq

The analysis information at any given expression is the set of all functions that could be the
result of evaluating that expression. As suggested above, expressions are identified by their labels

2In an imperative language this would more typically be written ea1pe2q
b, but we follow the functional convention

here, with parenthesis included when helpful syntactically.
3This nomenclature is confusing because it is also used to refer to analyses of control flow graphs in imperative

languages; We usually abbreviate to CFA when discussing the analysis of functional languages.

2

l, and we track similar information for variables. We use J to denote all possible functions; if we
know all the functions in the program, we could enumerate them, but a symbolicJ representation
is useful when we don’t have the whole program available.

Question: what is the Ď relation on this dataflow state?

A 0-CFA is a Constraint Based Analysis: it is defined via inference rules that generate constraints
over the possible dataflow values for each variable or labeled location; those constraints are then
solved. We use the ãÑ to define constraint generation. The judgment vewl ãÑ C can be read as “The
analysis of expression e with label l generates constraints C over dataflow state σ.” For our first
CFA, we can define inference rules for this judgment as follows:

vxwl ãÑ σpxq Ď σplq
var

In this rule, the variable value flows to the program location l. Although we didn’t list it
above (we generalize it below), a rule for constants produces the empty set, because this analysis
is tracking only function values.

The rules for functions/calls is more complex:

vewl0 ãÑ C

vλx.el0wl ãÑ tλx.eu Ď σplq Y C
lambda

ve1w
l1 ãÑ C1 ve2w

l2 ãÑ C2

vel11 el22 w
l ãÑ C1 Y C2 Y fn l1 : l2 ñ l

apply

The first rule just states that if a literal function is declared at a program location l, that function
is part of the lattice value σplq computed by the analysis for that location. Because we want to
analyze the data flow inside the function, we also generate a set of constraints C from the function
body and return those constraints as well.

The rule for application first analyzes the function and the argument to extract two sets of
constraints C1 and C2. We then generate an abstract function flow constraint of the form fn l1 :
l2 ñ l. This function flow constraint is interpreted by the constraint solver to generate additional
concrete constraints using the following rule:

λx.el00 P σpl1q

fn l1 : l2 ñ l ãÑ σpl2q Ď σpxq ^ σpl0q Ď σplq
function-flow

This rule states that for every literal function λx.el00 that the analysis (eventually) determines
the expression labeled l1 may evaluate to, we must generate additional constraints that capture
value flow from the actual argument expression l2 to formal function argument x, and from the
function result to the calling expression l.

Consider the first example program given above: ppλx.pxa ` 1bqcqdp3qeqg. The first rule to use
is apply (because that’s the top-level program construct). We will work this out together, but the
generated constraints could look like:

pσpxq Ď σpaqq Y ptλx.x` 1u Ď σpdqq Y pσpeq Ď σpxqq ^ pσpcq Ď σpgqq

There are many possible valid (typically referred to as acceptable) solutions to this constraint set.
Eliding the formalities, it suffices to say that we would like the least solution to these constraints,

3

as that will be the most precise result. We will return to constraint solving properly later in the
course; for now, we will simply assert that a σ that maps all variables and locations except d toH,
and d to tλx.x` 1u, satisfies this set of constraints.

Question: what might the rules for the if-then-else or arithmetic operator expressions look like?

2.2 0-CFA with dataflow information

The analysis in the previous subsection is interesting if all you’re interested in is which functions
can be called where, but doesn’t solve the general problem of dataflow analysis of functional pro-
grams. Fortunately, extending that approach to a more general analysis space is straightforward:
we simply add the abstract information we’re tracking to the abstract domain defined above. For
constant propagation, for example, we can extend the dataflow state as follows:

σ P VarY Lab Ñ L L “ Z`J` Ppλx.eq

Now, the analysis information maps each program point (or variable) to an integer n, orJ, or a
set of functions. This requires that we modify our inference rules slightly, but not as much as you
might expect. Indeed, the rules mostly change for arithmetic operators (which we omitted above)
and constants. We simply need to provide an abstraction over concrete values that captures the
dataflow information in question. We get the following rules:

vnwl ãÑ αpnq Ď σplq
const

ve1w
l1 ãÑ C1 ve2w

l2 ãÑ C2

vel11 ` e
l2
2 w

l ãÑ pσpl1q `J σpl2qq Ď σplq Y C1 Y C2

plus

Where α is defined as we discussed in abstract interpretation, and `J is addition lifted to work
over a domain that includes J (and simply ignores/drops any lambda values). There are similar
rules for other arithmetic operations.

Consider the second example, above, properly labeled: pppλf.pfa 3bqcqepλx.pxg ` 1hqiqjqk A
constant propagation analysis could produce the following results:

Var Y Lab L by rule
e λf.f 3 lambda
j λx.x` 1 lambda
f λx.x` 1 apply
a λx.x` 1 var
b 3 const
x 3 apply
g 3 var
h 1 const
i 4 add
c 4 apply
k 4 apply

3 m-Calling Context Sensitive Control Flow Analysis (m-CFA)

The control flow analysis described above quickly becomes imprecise in more interesting pro-
grams that reuse functions in several calling contexts. This problem should seem familiar from

4

interprocedural imperative program analysis, but the following code illustrates the problem in
this new language:

let add “ λx. λy. x` y
let add5 “ padd 5qa5

let add6 “ padd 6qa6

let main “ padd5 2qm

This example illustrates currying, in which a function such as add that takes two arguments x
and y in sequence can be called with only one argument (e.g. 5 in the call labeled a5), resulting in
a function that can later be called with the second argument (in this case, 2 at the call labeled m).
The value 5 for the first argument in this example is stored with the function in the closure add5.
Thus when the second argument is passed to add5, the closure holds the value of x so that the sum
x` y “ 5` 2 “ 7 can be computed.

In this case, we create two closures, add5 and add6, binding 5 and 6 and the respective values
for x. 0-CFA analysis cannot distinguish them, and because it only computes one value for x we
learn only that x has the value J. This is illustrated in the following analysis (we shorten the trace
to focus only on the variables):

Var Y Lab L notes
add λx. λy. x` y
x 5 when analyzing first call

add5 λy. x` y
x J when analyzing second call

add6 λy. x` y
main J

We can add precision using a context-sensitive analysis. One could, in principle, use either the
functional or call-string approach we discussed previously. In practice the call-string approach is
more commonly used for control-flow analysis in functional programming languages, perhaps be-
cause functional programs will typically produced an intractable number of contexts per function,
and it is easier to place a bound on the analysis in the call-string approach.

We add context sensitivity by making our analysis information σ track information separately
for different call strings, denoted by ∆. Here a call string is a sequence of labels, each one denoting
a function call site, where the sequence can be of any length between 0 and some bound m (in
practice m will be in the range 0-2 for scalability reasons):

σ P pVarY Labq ˆ∆ Ñ L ∆ “ Labnďm L “ Z`J` Pppλx.e, δqq

When a lambda expression is analyzed, we now consider as part of the lattice the call string
context δ in which its free variables were captured. We can then define a set of rules that generate
constraints which, when solved, provide an answer to control-flow analysis, as well as (in this
case) constant propagation:

δ $ vnwl ãÑ αpnq Ď σpl, δq
const

δ $ vxwl ãÑ σpx, δq Ď σpl, δq
var

5

δ $ vλx.el0wl ãÑ tpλx.e, δqu Ď σpl, δq
lambda

δ $ ve1w
l1 ãÑ C1 δ $ ve2w

l2 ãÑ C2

δ $ vel11 el22 w
l ãÑ C1 Y C2 Y fnδ l1 : l2 ñ l

apply

These rules contain a call string context δ in which the analysis of each line of code is done.
The rules const and var are unchanged except for indexing σ by the current context δ. Similarly,
the apply rule is the same except we index everything by δ and record δ as part of the function
flow constraint. The lambda rule now captures the context δ along with the lambda expression, so
that when the lambda expression is called the analysis knows in which context to look up the free
variables. But the rule no longer analyzes inside the function; we want to delay that and do it for
a new context δ1 when the function is called.

pλx.el00 , δq P σpl1q δ1 “ suffix pδ``l,mq
C1 “ σpl2, δq Ď σpx, δ1q ^ σpl0, δ

1q Ď σpl, δq
C2 “ tσpy, δ0q Ď σpy, δ1q | y P FV pλx.e0qu

δ1 $ ve0w
l0 ãÑ C3

fnδ l1 : l2 ñ l ãÑ C1 Y C2 Y C3
function-flow-δ

The function flow constraint has gotten a bit more complicated. A new context δ1 is formed
by appending the current call site l to the old call string, then taking the suffix of length m (or
less). For each function that may be called, we set up constraints between the actual and formal
parameters and the function result, as before (C1). We analyze the body of the function in the new
context δ1 (C3). Finally, we produce constraints that bind the free variables in the new context: all
free variables in the called function flow from the point δ0 at which the closure was captured.

We can now reanalyze the earlier example, observing the benefit of context sensitivity. In the
table below, ‚ denotes the empty calling context (e.g. when analyzing the main procedure):

Var / Lab, δ L notes
add, ‚ pλx. λy. x` y, ‚q
x, a5 5

add5, ‚ pλy. x` y, a5q
x, a6 6

add6, ‚ pλy. x` y, a6q
main, ‚ 7

Note three points about this analysis. First, we can distinguish the values of x in the two
calling contexts: x is 5 in the context a5 but it is 6 in the context a6. Second, the closures returned
to the variables add5 and add6 record the scope in which the free variable x was bound when the
closure was captured. This means, third, that when we invoke the closure add5 at program point
m, we will know that x was captured in calling context a5, and so when the analysis analyzes the
addition, it knows that x holds the constant 5 in this context. This enables constant propagation
to compute a precise answer, learning that the variable main holds the value 7.

6

Optional: Uniform k-Calling Context Sensitive Control Flow Analysis (k-CFA)

m-CFA was proposed recently by Might, Smaragdakis, and Van Horn as a more scalable version
of the original k-CFA analysis developed by Shivers for Scheme. While m-CFA now seems to be
a better tradeoff between scalability and precision, k-CFA is interesting both for historical reasons
and because it illustrates a more precise approach to tracking the values of variables in a closure.
The following example illustrates a situation in which m-CFA may be too imprecise:

let adde “ λx.
let h “ λy. λz. x` y ` z
let r “ h 8
in r

let t “ padde 2qt

let f “ padde 4qf

let e “ pt 1qe

When we analyze it with m-CFA, we get the following results:

Var / Lab, δ L notes
adde, ‚ pλx..., ‚q

x, t 2
y, r 8
x, r 2 when analyzing first call

t, ‚ pλz. x` y ` z, rq
x, f 4
x, r J when analyzing second call

f, ‚ pλz. x` y ` z, rq
t, ‚ J

The k-CFA analysis is like m-CFA, except that rather than keeping track of the scope in which
a closure was captured, the analysis keeps track of the scope in which each variable captured in
the closure was defined. We use an environment η to track this. Note that since η can represent a
separate calling context for each variable, it has the potential to be more accurate, but also much
more expensive. We can represent the analysis information as follows:

σ P pVarY Labq ˆ∆ Ñ L ∆ “ Labnďk

L “ Z`J` Ppλx.e, ηq η P Var Ñ ∆

Let us briefly analyze the complexity of this analysis. In the worst case, if a closure captures n
different variables, we may have a different call string for each of them. There are Opnkq different
call strings for a program of size n, so if we keep track of one for each of n variables, we have
Opnn˚kq different representations of the contexts for the variables captured in each closure. This
exponential blowup is why k-CFA scales so badly. m-CFA is comparatively cheap—there are
“only” Opnkq different contexts for the variables captured in each closure—still exponential in k,
but polynomial in n for a fixed (and generally small) k.

We can now define the rules for k-CFA. They are similar to the rules for m-CFA, except that we
now have two contexts: the calling context δ, and the environment context η tracking the context
in which each variable is bound. When we analyze a variable x, we look it up not in the current

7

context δ, but the context ηpxq in which it was bound. When a lambda is analyzed, we track the
current environment η with the lambda, as this is the information necessary to determine where
captured variables are bound. The function flow rule is actually somewhat simpler, because we
do not copy bound variables into the context of the called procedure:

δ, η $ vnwl ãÑ αpnq Ď σpl, δq
const

δ, η $ vxwl ãÑ σpx, ηpxqq Ď σpl, δq
var

δ, η $ vλx.el0wl ãÑ tpλx.e, ηqu Ď σpl, δq
lambda

δ, η $ ve1w
l1 ãÑ C1 δ, η $ ve2w

l2 ãÑ C2

δ, η $ vel11 el22 w
l ãÑ C1 Y C2 Y fnδ l1 : l2 ñ l

apply

pλx.el00 , η0q P σpl1q δ1 “ suffix pδ``l,mq
C1 “ σpl2, δq Ď σpx, δ1q ^ σpl0, δ

1q Ď σpl, δq
δ1, η0 $ ve0w

l0 ãÑ C2

fnδ l1 : l2 ñ l ãÑ C1 Y C2
function-flow-δ

Now we can see how k-CFA analysis can more precisely analyze the latest example program.
In the simulation below, we give two tables: one showing the order in which the functions are
analyzed, along with the calling context δ and the environment η for each analysis, and the other
as usual showing the analysis information computed for the variables in the program:

function δ η

main ‚ H

adde t tx ÞÑ tu
h r tx ÞÑ t, y ÞÑ ru

adde f tx ÞÑ fu
h r tx ÞÑ f, y ÞÑ ru

λz.... e tx ÞÑ t, y ÞÑ r, z ÞÑ eu

Var / Lab, δ L notes
adde, ‚ pλx..., ‚q

x, t 2
y, r 8
t, ‚ pλz. x` y ` z, tx ÞÑ t, y ÞÑ ruq
x, f 4
f, ‚ pλz. x` y ` z, tx ÞÑ f, y ÞÑ ruq
z, e 1
t, ‚ 11

Tracking the definition point of each variable separately is enough to restore precision in this
program. However, programs with this structure—in which analysis of the program depends on
different calling contexts for bound variables even when the context is the same for the function
eventually called—appear to be rare in practice. Might et al. observed no examples among the real
programs they tested in which k-CFA was more accurate than m-CFA—but k-CFA was often far

8

more costly. Thus at this point the m-CFA analysis seems to be a better tradeoff between efficiency
and precision, compared to k-CFA.

9

