
Lecture Notes:
Interprocedural Analysis

17-355/17-665/17-819: Program Analysis (Spring 2020)
Claire Le Goues∗

clegoues@cs.cmu.edu

Consider an extension of WHILE3ADDR that includes functions. We thus add a new syntactic
category F (for functions), and two new instruction forms (function call and return), as follows:

F ::“ fun fpxq t n : I u
I ::“ . . . | return x | y :“ fpxq

In the notation above, n : I , the line is shorthand for a list, so that the body of a function is a
list of instructions I with line numbers n. We assume in our formalism that all functions take a
single integer argument and return an integer result, but this is easy to generalize if we need to.
We can also add global variables to this language by tracking a separate set of variables, Globals.
We assume simple syntactic scoping.

Note that this is not a truly precise syntactic specification. Specifying even just “possibly empty
list of arithmetic expressions” properly takes several intermediate syntactic steps; correctly han-
dling scope requires rather significant refinement to the operational semantics. However, provid-
ing such precision is more trouble than it’s worth for this discussion. Function names are strings.
Functions may return either void or a single integer. We leave the problem of type-checking to
another class.

We’ve made our programming language much easier to use, but dataflow analysis has become
rather more difficult. Interprocedural analysis concerns analyzing a program with multiple pro-
cedures, ideally taking into account the way that information flows among those procedures. We
use zero analysis as our running example throughout, unless otherwise indicated.

1 Two Simple Approaches

Default assumptions. Our first approach assumes a default lattice value for all arguments to
a function La and a default value for procedure results Lr. In some respects, La is equivalent
to the initial dataflow information we set at the entry to the program when we were only looking
intraprocedurally; now we assume it on entry to every procedure. We check the assumptions hold
when analyzing a call or return instruction (trivial if La “ Lr “ J). We then use the assumption
when analyzing the result of a call instruction or starting the analysis of a method. For example,
we have σ0 “ tx ÞÑ La | x P Varu.

Here is a sample flow function for call and return instructions:

∗These notes were developed together with Jonathan Aldrich

1

fvx :“ gpyqwpσq “ σrx ÞÑ Lrs perror if σpyq Ď Laq

fvreturn xwpσq “ σ perror if σpxq Ď Lrq

We can apply zero analysis to the following function, using La “ Lr “ J:

1 : fun divByXpxq : int
2 : y :“ 10{x
3 : return y

4 : fun mainpq : void
5 : z :“ 5
6 : w :“ divByXpzq

The results are sound, but imprecise. We can avoid the false positive by using a more optimistic
assumption La “ Lr “ NZ. But then we get a problem with the following program:

1 : fun doublepx : intq : int
2 : y :“ 2 ˚ x
3 : return y

4 : fun mainpq : void
5 : z :“ 0
6 : w :“ doublepzq

Now what?

Annotations. An alternative approach uses annotations. This allows us to choose different argu-
ment and result assumptions for different procedures. Flow functions might look like:

fvx :“ gpyqwpσq “ σrx ÞÑ annotvgw.rs perror if σpyq Ď annotvgw.aq

fvreturn xwpσq “ σ perror if σpxq Ď annotvgw.rq

Now we can verify that both of the above programs are safe, given the proper annotations. We
will see other example analysis approaches that use annotations later in the semester, though
historically, programmer buy-in remains a challenge in practice.

Local vs. global variables. If we add global variables, we must make conservative assumptions
about them too. Assume globals should always be described by some lattice value Lg at procedure
boundaries. We can extend the flow functions as follows:

fvx :“ gpyqwpσq “ σrx ÞÑ Lrsrz ÞÑ Lg | z P Globalss
perror if σpyq Ď La _ @z P Globals : σpzq Ď Lgq

fvreturn xwpσq “ σ
perror if σpxq Ď Lr _ @z P Globals : σpzq Ď Lgq

The annotation approach can also be extended in a natural way to handle global variables.

2

2 Interprocedural Control Flow Graphs

An approach that avoids the burden of annotations, and can capture what a procedure actually
does as used in a particular program, is to build a control flow graph for the entire program, rather
than just a single procedure. To make this work, we handle call and return instructions specially
as follows:

• We add additional edges to the control flow graph. For every call to function g, we add an
edge from the call site to the first instruction of g, and from every return statement of g to
the instruction following that call.

• When analyzing the first statement of a procedure, we generally gather analysis information
from each predecessor as usual. However, we take out all dataflow information related to
local variables in the callers. Furthermore, we add dataflow information for parameters in
the callee, initializing their dataflow values according to the actual arguments passed in at
each call site.

• When analyzing an instruction immediately after a call, we get dataflow information about
local variables from the previous statement. Information about global variables is taken from
the return sites of the function that was called. Information about the variable that the result
of the function call was assigned to comes from the dataflow information about the returned
value.

Now the examples described above can be successfully analyzed. However, other programs
still cause problems:

1 : fun doublepx : intq : int
2 : y :“ 2 ˚ x
3 : return y

4 : fun mainpq
5 : z :“ 5
6 : w :“ doublepzq
7 : z :“ 10{w
8 : z :“ 0
9 : w :“ doublepzq

What’s the issue here?

3 Context Sensitive Analysis

Context-sensitive analysis analyzes a function either multiple times, or parametrically, so that the
analysis results returned to different call sites reflect the different analysis results passed in at
those call sites. We could get context sensitivity just by duplicating (or inlining) all callees, but
this only works for non-recursive programs.

A simple solution is to build a summary of each function, mapping dataflow input information
to dataflow output information. We will analyze each function once for each context, where a
context is an abstraction for a set of calls to that function. At a minimum, each context must track
the input dataflow information to the function.

3

Let’s look at how this approach allows the program given above to be proven safe by zero
analysis...(Example will be given in class)

Things become more challenging in the presence of recursive functions, or more generally mu-
tual recursion. Let us consider context-sensitive interprocedural constant propagation analysis of
a factorial function called by main. We are not focused on the intraprocedural part of the analysis,
so we will just show the function in the form of Java or C source code:

int fact(int x) {
if (x == 1)

return 1;
else

return x * fact(x-1);
}

void main() {
int y = fact(2);
int z = fact(3);
int w = fact(getInputFromUser());

}

We can analyze the first two calls to fact within main straightforwardly, and in fact we can
even cache the results of analyzing fact(2) for reuse when analyzing the recursive call inside
fact(3).

For the third call to fact, the argument is determined at runtime, and so constant propagation
uses J for the calling context. In this case, the recursive call to fact() also has J as the calling
context. But we cannot look up the result in the cache yet as analysis of fact() with J has
not completed. A naive approach would attempt to analyze fact() with J again, and would
therefore not terminate.

We can solve the problem by applying the same idea as in intraprocedural analysis. The recur-
sive call is a kind of a loop. We make the initial assumption that the result of the recursive call isK,
conceptually equivalent to information coming from the back edge of a loop. When we discover
the result is a higher point in the lattice then K, we reanalyze the calling context (and recursively,
all calling contexts that depend on it). The algorithm to do so can be expressed as follows:

type Context
val fn : Function Ź the function being called
val input : σ Ź input for this set of calls

type Summary Ź the input/output summary for a context
val input : σ
val output : σ

val worklist : SetrContexts Ź contexts we must revisit due to updated analysis information
val analyzing : StackrContexts Ź the contexts we are currently analyzing
val results :MaprContext, Summarys Ź the analysis results
val callers :MaprContext, SetrContextss Ź the call graph - used for change propagation
function ANALYZEPROGRAM Ź starting point for interprocedural analysis

worklistÐ tContextpmain,Jqu
resultsrContextpmain,Jqs.inputÐ J

while NOTEMPTY(worklist) do
ctxÐ REMOVE(worklist)
ANALYZE(ctx, resultsrctxs.input)

end while
end function

function ANALYZE(ctx, σi)
σo Ð resultsrctxs.output
PUSH(analyzing, ctx)

4

σ1
o ÐINTRAPROCEDURAL(ctx, σi)

POP(analyzing)
if σ1

o Ď σo then
resultsrctxs Ð Summarypσi, σo \ σ

1
oq

for c P callersrctxs do
ADD(worklist, c)

end for
end if
return σ1

o

end function

function FLOW(vn: x :“ fpyqw, ctx, σi) Ź called by intraprocedural analysis
σin Ð rformalpfq ÞÑ σipyqs Źmap f ’s formal parameter to info on actual from σi
calleeCtxÐ GETCTXpf, ctx, n, σinq
σo ÐRESULTSFOR(calleeCtx, σin)
ADD(callersrcalleeCtxs, ctx)
return σirx ÞÑ σorresultss Ź update dataflow with the function’s result

end function

function RESULTSFOR(ctx, σi)
σ Ð resultsrctxs.output
if σ ‰ K^ σi Ď resultsrctxs.input then

return σ Ź existing results are good
end if
resultsrctxs.inputÐ resultsrctxs.input\ σi Ź keep track of possibly more general input
if ctx P analyzing then

return K Ź initially optimistic assumption for recursive calls
else

return ANALYZE(ctx, resultsrctxs.input)
end if

end function

function GETCTX(f, callingCtx, n, σi)
return Contextpf, σiq Ź constructs a new Context with f and σi

end function
The following example shows that the algorithm generalizes naturally to the case of mutually

recursive functions:

bar() { if (...) return 2 else return foo() }
foo() { if (...) return 1 else return bar() }

main() { foo(); }

4 Precision and Termination

Precision. A notable part of the algorithm above is that if we are currently analyzing a context
and are asked to analyze it again, we returnK as the result of the analysis. This has similar benefits
to using K for initial dataflow values on the back edges of loops: starting with the most optimistic

5

assumptions about code we havent finished analyzing allows us to reach the best possible fixed
point. The following example program illustrates a function where the result of analysis will be
better if we assume K for recursive calls to the same context, vs. for example if we assumed J:

int iterativeIdentity(x : int, y : int)
if x <= 0

return y
else

iterativeIdentity(x-1, y)

void main(z)
w = iterativeIdentity(z, 5)

Termination. When will the algorithm above terminate? Analyze is called only when (1) a context
has not been analyzed yet, or when (2) it has just been taken off the worklist. So it is called once
per reachable context, plus once for every time a reachable context is added to the worklist.

We can bound the total number of worklist additions by (C) the number of reachable contexts,
times (H) the height of the lattice (we dont add to the worklist unless results for some context
changed, i.e. went up in the lattice relative to an initial assumption of K or relative to the last
analysis result), times (N) the number of callers of that reachable context. C*N is just the number
of edges (E) in the inter-context call graph, so we can see that we will do intraprocedural analysis
O(E*H) times.

Thus the algorithm will terminate as long as the lattice is of finite height and there are a finite
number of reachable contexts. Note, however, that for some lattices, notably including constant
propagation, there are an unbounded number of lattice elements and thus an unbounded number
of contexts. If more than a finite number are not reachable, the algorithm will not terminate.
So for lattices with an unbounded number of elements, we need to adjust the context-sensitivity
approach above to limit the number of contexts that are analyzed.

5 Approaches to Limiting Context-Sensitivity

No context-sensitivity. One approach to limiting the number of contexts is to allow only one for
each function. This is equivalent to the interprocedural control flow graph approach described
above. We can recast this approach as a variant of the generic interprocedural analysis algorithm
by replacing the Context type to track only the function being called, and then having the GETCTX

method always return the same context:
type Context

val fn : Function

function GETCTX(f, callingCtx, n, σi)
return Contextpfq

end function
Note that in this approach the same calling context might be used for several different input

dataflow information σi, one for each call to GETCTX. This is handled correctly by RESULTSFOR,
which updates the input information in the Summary for that context so that it generalizes all the
input to the function seen so far.

6

Limited contexts. Another approach is to create contexts as in the original algorithm, but once
a certain number of contexts have been created for a given function, merge all subsequent calls
into a single context. Of course, this means the algorithm will lose precision beyond this bounds.
But, if most functions have fewer contexts that are actually used, this can be a good strategy for
analyzing most of the program in a context-sensitive way while avoiding performance problems
for the minority of functions that are called from many different contexts.

Can you implement a GETCTX function that represents this strategy?

Call strings. Another context sensitivity strategy is to differentiate contexts by a call string: the
call site, its call site, and so forth. In the limit, when considering call strings of arbitrary length, this
provides full context sensitivity (but is not guaranteed to terminate for arbitrary recursive func-
tions). Dataflow analysis results for contexts based on arbitrarylength call strings are as precise
as the results for contexts based on separate analysis for each different input dataflow informa-
tion. The latter strategy can be more efficient, however, because it reuses analysis results when a
function is called twice with different call strings but the same input dataflow information.

In practice, both strategies (arbitrary-length call strings vs. input dataflow information) can
result in reanalyzing each function an unacceptable number of times. Multiple contexts must be
combined somehow. The call-string approach provides an easy, but naive, way to do this: call
strings can simply be cut off at a certain length. For example, if we have call strings “a b c” and
“d e b c” (where c is the most recent call site) with a cutoff of 2, the input dataflow information
for these two call strings will be merged and the analysis will be run only once, for the context
identified by the common length-two suffix of the strings, “b c”. We can illustrate this by redoing
the analysis of the factorial example. The algorithm is the same as above; however, we use a
different implementation of GETCTX that computes the call string suffix:

type Context
val fn : Function
val string : ListrInts

function GETCTX(f, callingCtx, n, σi)
newStr ÐSUFFIX(callingCtx.string ++ n, CALL STRING CUTOFF)
return Contextpf, newStrq

end function
Although this strategy reduces the overall number of analyses, it does so in a relatively blind

way. If a function is called many times but we only want to analyze it a few times, we want to
group the calls into analysis contexts so that their input information is similar. Call string context
is a heuristic way of doing this that sometimes works well. But it can be wasteful: if two different
call strings of a given length happen to have exactly the same input analysis information, we will
do an unnecessary extra analysis, whereas it would have been better to spend that extra analysis
to differentiate calls with longer call strings that have different analysis information.

Given a limited analysis budget, it is usually best to use heuristics that are directly based on
input information. Unfortunately these heuristics are harder to design, but they have the potential
to do much better than a call-string based approach. We will look at some examples from the
literature to illustrate this later in the course.

7

