
Lecture Notes: Program Analysis Correctness

17-355/17-665/17-819: Program Analysis (Spring 2020)
Claire Le Goues∗

clegoues@cs.cmu.edu

1 Termination

As we think about the correctness of program analysis, let us first think more carefully about the
situations under which program analysis will terminate. In a previous lecture, we analyzed the
performance of Kildall’s worklist algorithm. A critical part of that performance analysis was the
the observation that running a flow function on the same statement for the second time always ei-
ther leaves the output dataflow analysis information unchanged, or makes it more approximate—
that is, it moves the current dataflow analysis results up in the lattice, relative to the output when
the flow function was run the first time. The dataflow values at each program point describe an
ascending chain:

Ascending Chain A sequence σk is an ascending chain iff n ď m implies σn Ď

σm
We can define the height of an ascending chain, and of a lattice, in order to bound the number of
new analysis values we can compute at each program point:

Height of an Ascend-
ing Chain

An ascending chain σk has finite height h if it contains h` 1
distinct elements.

Height of a Lattice A lattice pL,Ďq has finite height h if there is an ascending
chain in the lattice of height h, and no ascending chain in
the lattice has height greater than h

We can now show that for a lattice of finite height, the worklist algorithm is guaranteed to
terminate. We do so by showing that the dataflow analysis information at each program point
follows an ascending chain. Consider again the worklist algorithm, this time in a slight variation
that stores information both before and after each instruction, and computes the new input to a
node by joining the outputs of all its predecessors. We assume a distinguished programStart
node which comes before the first instruction:

for Instruction i in program
input[i] = output[i] = K

output[programStart] = initialDataflowInformation
worklist = { firstInstruction }

∗These notes were developed together with Jonathan Aldrich

1

while worklist is not empty
take an instruction i off the worklist
input[i] = \kPpredspiq output[k]

newOutput = flow(i, input[i])
if newOutput ‰ output[i]

output[i] = newOutput
for Instruction j in succs(i)

add j to worklist

We can make an intuitive inductive argument for termination: At the beginning of the analysis,
the analysis information before and after every program point (other than after the program start
node) is K (by definition). Thus the first time we run each flow function for each instruction, the
result will be at least as high in the lattice as what was there before (because nothing is lower in
a lattice than K). We will run the flow function for a given instruction again at a program point
only if the output from a predecessor instruction changes. Assume that the previous time we ran
the flow function, we had input information σi and output information σo. Now we are running it
again because the input dataflow analysis information has changed to some new σ1i—and by the
induction hypothesis, we can assume it is higher in the lattice than before, i.e. σi Ď σ1i.

What we need to show is that the output information σ1o is at least as high in the lattice as
the old output information σo—that is, we must show that σo Ď σ1o. This will be true if our flow
functions are monotonic:

Monotonicity A function f is monotonic iff σ1 Ď σ2 implies fpσ1q Ď fpσ2)

Now we can state the termination theorem:

Theorem 1 (Dataflow Analysis Termination). If a dataflow lattice pL,Ďq has finite height, and the
corresponding flow functions are monotonic, the worklist algorithm will terminate.

Proof. The idea should be intuitively clear from the argument above. However, to make it rigor-
ous, we provide the following termination metric:

M “ |worklist| ` EpN ˚ LCpσq

where |worklist| is the length of the worklist, EpN is the maximum number of outgoing Edges
per Node, and LCpσq is the longest aescending chain from σ to J. When computing LCpσq we
consider σ to be one big lattice, i.e. a tuple constructed from the sub-lattices for each program
point, so that moving up in the sub-lattice for any program point moves the overall σ lattice up as
well.

M is finite because |worklist| is bounded by the number of nodes in the program, EpN is
finite, and the lattice σ is of finite height (which we know because it is a tuple lattice with a finite
number of sub-lattices, all of which have finite height by the assumption in the theorem).

M decreases on each iteration of the loop, as follows. |worklist| generally decreases by one in
each iteration because one node is removed from it. However, we must account for additions to
the worklist when the newOutput ‰ output[i] condition holds. But note that when this con-
dition holds, newOutput must be higher in the lattice than output[i] by monotonicity. Thus,
running the flow function reduced LCpσq by at least one. We then add at most EpN nodes to the
worklist. The increase to the worklist is at least balanced by the decrease in EpN ˚ LCpσq. Thus,
the metricM decreases even when the condition that results in adding nodes to the worklist holds.

2

Exercise 1. Convince yourself that, for monotonic flow functions, the algorithm above does the
same thing as the algorithm given in a previous lecture.

2 Montonicity of Zero Analysis

We can formally show that zero analysis is monotone; this is relevant both to the proof of termi-
nation, above, and to correctness, next. We will only give a couple of the more interesting cases,
and leave the rest as an exercise to the reader:

Case fZvx :“ 0wpσq “ σrx ÞÑ Zs:
Assume we have σ1 Ď σ2
Since Ď is defined pointwise, we know that σ1rx ÞÑ Zs Ď σ2rx ÞÑ Zs

Case fZvx :“ ywpσq “ σrx ÞÑ σpyqs:
Assume we have σ1 Ď σ2
Since Ď is defined pointwise, we know that σ1pyq Ďsimple σ2pyq

Therefore, using the pointwise definition of Ď again, we also obtain σ1rx ÞÑ σ1pyqs Ď

σ2rx ÞÑ σ2pyqs
(αsimple and Ďsimple are simply the unlifted versions of α and Ď, i.e. they operate on individual
values rather than maps.)

3 Correctness

What does it mean for an analysis of a WHILE3ADDR program to be correct? Intuitively, we would
like the program analysis results to correctly describe every actual execution of the program. To
establish correctness, we will make use of the precise definitions of WHILE3ADDR we gave in the
form of operational semantics in the first couple of lectures. We start by formalizing a program
execution as a trace:

Program Trace A trace T of a program P is a potentially infinite sequence
tc0, c1, ...u of program configurations, where c0 “ E0, 1 is
called the initial configuration, and for every i ě 0 we have
P $ ci ; ci`1

.

Given this definition, we can formally define soundness:

Dataflow Analysis
Soundness

The result tσn | n P P u of a program analysis running on
program P is sound iff, for all traces T of P , for all i such
that 0 ď i ă lengthpT q, αpciq Ď σni

In this definition, just as ci is the program configuration immediately before executing in-
struction ni as the ith program step, σni is the dataflow analysis information immediately before
instruction ni.

Exercise 2. Consider the following (incorrect) flow function for zero analysis:

fZvx :“ y ` zwpσq “ σrx ÞÑ Zs

Give an example of a program and a concrete trace that illustrates that this flow function is
unsound.

3

The key to designing a sound analysis is to make sure that the flow functions map abstract
information before each instruction to abstract information after that instruction in a way that
matches the instruction’s concrete semantics. Another way of saying this is that the manipulation
of the abstract state done by the analysis should reflect the manipulation of the concrete machine
state done by the executing instruction. We can formalize this as a local soundness property:

Local Soundness A flow function f is locally sound iff P $ ci ; ci`1 and
αpciq Ď σni and fvP rniswpσniq “ σni`1 implies αpci`1q Ď

σni`1

In English: if we take any concrete execution of a program instruction, map the input machine
state to the abstract domain using the abstraction function, find that the abstracted input state is
described by the analysis input information, and apply the flow function, we should get a result
that correctly accounts for what happens if we map the actual concrete output machine state to
the abstract domain.

Exercise 3. Consider again the incorrect zero analysis flow function described above. Specify an
input state ci and use that input state to show that the flow function is not locally sound.

We can now show that the flow functions for zero analysis are locally sound. Although techni-
cally the overall abstraction function α accepts a complete program configuration pE,nq, for zero
analysis we can ignore the n component and so in the proof below we will simply focus on the
environment E. We show the cases for a couple of interesting syntax forms; the rest are either
trivial or analogous:

Case fZvx :“ 0wpσniq = σnirx ÞÑ Zs:
Assume ci “ E,n and αpEq Ď σni

Thus σni`1 “ fZvx :“ 0wpσniq “ σnirx ÞÑ Zs
ci`1 “ Erx ÞÑ 0s, n` 1 by rule step-const
Now αpci`1q “ αpErx ÞÑ 0sq “ αpEqrx ÞÑ Zs by the definition of α.
αpEq Ď σni implies αpci`1q “ αpEqrx ÞÑ Zs Ď σnirx ÞÑ Zs “ σni`1 ,
so therefore αpci`1q Ď σni`1 , which finishes the case.

Case fZvx :“ mwpσniq “ σnirx ÞÑ N s where m ‰ 0:
Assume ci “ E,n and αpEq Ď σni

Thus σni`1 “ fZvx :“ mwpσniq “ σnirx ÞÑ N s
ci`1 “ Erx ÞÑ ms, n` 1 by rule step-const
Now αpci`1q “ αpErx ÞÑ msq “ αpEqrx ÞÑ N s by the definition of α and the assumption
that m ‰ 0.
αpEq Ď σni implies αpci`1q “ αpEqrx ÞÑ N s Ď σnirx ÞÑ N s “ σni`1 .
so therefore αpci`1q Ď σni`1 which finishes the case.

4

Case fZvx :“ y op zwpσniq “ σnirx ÞÑ Js:
Assume ci “ E,n and αpEq Ď σni

Thus σni`1 “ fZvx :“ y op zwpσniq “ σnirx ÞÑ Js

ci`1 “ Erx ÞÑ ks, n` 1 for some k by rule step-arith
Now αpci`1q “ αpErx ÞÑ ksq Ď αpEqrx ÞÑ Js because the map is equal for all keys except
x, and for x we have αsimplepkq Ďsimple J for all k, where αsimple and Ďsimple are the unlifted
versions of α and Ď, i.e. they operate on individual values rather than maps.
αpEq Ď σni implies αpci`1q “ αpErx ÞÑ ksq Ď αpEqrx ÞÑ Js Ď σnirx ÞÑ Js “ σni`1 ,
so therefore, by transitivity of Ď, αpci`1q Ď σni`1 which finishes the case.

Exercise 4. Prove the case for fZvx :“ ywpσq “ σrx ÞÑ σpyqs.

Now we can show that local soundness can be used to prove the global soundness of a dataflow
analysis. To do so, let us formally define the state of the dataflow analysis at a fixed point:

Fixed Point A dataflow analysis result tσi | i P P u is a fixed point iff
σ0 Ď σ1 where σ0 is the initial analysis information and σ1
is the information before the first instruction, and for each
instruction i we have

Ů

jPpredspiq fvP rjswpσjq Ď σi.

The worklist algorithm show above computes a fixed point when it terminates. We can prove this
by showing that the following loop invariant is maintained:

@i . pDj P predspiq such that fvP rjswpσjq Ď σiq ñ i P worklist

The invariant is initially true if we assume that flow functions when applied to K always pro-
duce K (if this is not true, the invariant can be reformulated in a slightly more complicated way).
The invariant is maintained because whenever the output fvP rjswpσjq of instruction j changes,
possibly breaking the invariant, then the successors of j are added to the worklist, thus restoring
it. When an instruction i is removed from the worklist and processed, the invariant as it applies
to i is established. Finally, when the worklist is empty, the definition above is equivalent to the
definition of a fixed point.

And now the main result we will use to prove program analyses correct:

Theorem 2 (A fixed point of a locally sound analysis is globally sound). If a dataflow analysis’s flow
function f is monotonic and locally sound, and for all traces T we have αpc0q Ď σ0 where σ0 is the initial
analysis information, then any fixed point tσn | n P P u of the analysis is sound.

Proof. To show that the analysis is sound, we must prove that for all program traces, every pro-
gram configuration in that trace is correctly approximated by the analysis results. We consider an
arbitrary program trace T and do the proof by induction on the program configurations tciu in the
trace.

5

Case c0:
αpc0q Ď σ0 by assumption.
σ0 Ď σn0 by the definition of a fixed point.
αpc0q Ď σn0 by the transitivity of Ď.

Case ci`1:
αpciq Ď σni by the induction hypothesis.
P $ ci ; ci`1 by the definition of a trace.
αpci`1q Ď fvP rniswpσniq by local soundness.
fvP rniswpσniq \ ... Ď σni`1 by the definition of fixed point.
fvP rniswpσniq Ď σni`1 by the properties of \.
αpci`1q Ď σni`1 by the transitivity of Ď.

Since we previously proved that Zero Analysis is locally sound and that its flow functions
are monotonic, we can use this theorem to conclude that the analysis is sound. This means, for
example, that Zero Analysis will never neglect to warn us if we are dividing by a variable that
could be zero.

6

