
Lecture Notes: A Dataflow Analysis Framework for
WHILE3ADDR

17-355/17-665/17-819O: Program Analysis (Spring 2020)
Claire Le Goues

clegoues@cs.cmu.edu

1 Defining a dataflow analysis

A dataflow analysis computes some dataflow information at each program point in the control
flow graph.1 We thus start by examining how this information is defined. We will use σ to denote
this information. Typically σ tells us something about each variable in the program. For example,
σ may map variables to abstract values taken from some set L:

σ P Var Ñ L

L represents the set of abstract values we are interested in tracking in the analysis. This varies
from one analysis to another. For example, consider a zero analysis, which tracks whether each
variable is zero or not at each program point (Thought Question: Why would this be useful?). For
this analysis, we define L to be the set tZ,N,Ju. The abstract value Z represents the value 0, N
represents all nonzero values. J is pronounced “top”, and we define it more concretely later it
in these notes; we use it as a question mark, for the situations when we do not know whether a
variable is zero or not, due to imprecision in the analysis.

Conceptually, each abstract value represents a set of one or more concrete values that may
occur when a program executes. We define an abstraction function α that maps each possible
concrete value of interest to an abstract value:

α : ZÑ L

For zero analysis, we define α so that 0 maps to Z and all other integers map to N :

αZp0q “ Z

αZpnq “ Nwhere n ‰ 0

The core of any program analysis is how individual instructions in the program are analyzed
and affect the analysis state σ at each program point. We define this using flow functions that map
the dataflow information at the program point immediately before an instruction to the dataflow
information after that instruction. A flow function should represent the semantics of the instruc-
tion, but abstractly, in terms of the abstract values tracked by the analysis. We will link semantics
to the flow function precisely when we talk about correctness of dataflow analysis. For now, to
approach the idea by example, we define the flow functions fZ for zero analysis on WHILE3ADDR

as follows:
1Refer to the first set of course notes for an overview of CFGs.

1

fZvx :“ 0wpσq “ rx ÞÑ Zsσ (1)
fZvx :“ nwpσq “ rx ÞÑ N sσ where n ‰ 0 (2)

fZvx :“ ywpσq “ rx ÞÑ σpyqsσ (3)

fZvx :“ y op zwpσq “ rx ÞÑ Jsσ (4)

fZvgoto nwpσq “ σ (5)

fZvif x “ 0 goto nwpσq “ σ (6)

In the notation, the form of the instruction is an implicit argument to the function, which is
followed by the explicit dataflow information argument, in the form fZvIwpσq. (1) and (2) are for
assignment to a constant. If we assign 0 to a variable x, then we should update the input dataflow
information σ so that x maps to the abstract value Z. The notation rx ÞÑ Zsσ denotes dataflow
information that is identical to σ except that the value in the mapping for x is updated to refer
to Z. Flow function (3) is for copies from a variable y to another variable x: we look up y in σ,
written σpyq, and update σ so that x maps to the same abstract value as y.

We start with a generic flow function for arithmetic instructions (4). Arithmetic can produce
either a zero or a nonzero value, so we use the abstract value J to represent our uncertainty. More
precise flow functions are available based on certain instructions or operands. For example, if
the instruction is subtraction and the operands are the same, the result will definitely be zero.
Or, if the instruction is addition, and the analysis information tells us that one operand is zero,
then the addition is really a copy and we can use a flow function similar to the copy instruction
above. These examples could be written as follows (we would still need the generic case above
for instructions that do not fit such special cases):

fZvx :“ y ´ ywpσq “ rx ÞÑ Zsσ

fZvx :“ y ` zwpσq “ rx ÞÑ σpyqsσ where σpzq “ Z

Exercise 1. Define another flow function for some arithmetic instruction and certain conditions
where you can also provide a more precise result than J.

The flow function for branches ((5) and (6)) is trivial: branches do not change the state of the
machine other than to change the program counter, and thus the analysis result is unaffected.

However, we can provide a better flow function for conditional branches if we distinguish the
analysis information produced when the branch is taken or not taken. To do this, we extend our
notation once more in defining flow functions for branches, using a subscript to the instruction
to indicate whether we are specifying the dataflow information for the case where the condition
is true (T) or when it is false (F). For example, to define the flow function for the true condition
when testing a variable for equality with zero, we use the notation fZvif x “ 0 goto nwT pσq. In this
case we know that x is zero so we can update σ with the Z lattice value. Conversely, in the false
condition we know that x is nonzero:

fZvif x “ 0 goto nwT pσq “ rx ÞÑ Zsσ
fZvif x “ 0 goto nwF pσq “ rx ÞÑ N sσ

2

Exercise 2. Define a flow function for a conditional branch testing whether a variable x ă 0.

2 Running a dataflow analysis

The point of developing a dataflow analysis is to compute information about possible program
states at each point in a program. For example, for of zero analysis, whenever we divide some
expression by a variable x, we might like to know whether x must be zero (the abstract value Z)
or may be zero (represented by J) so that we can warn the developer.

2.1 Straightline code

One way to think of a simple dataflow analysis is that are statically simulating program execution,
tracking only the information we care about. For each node in the CFG (each of which contains
an instruction), we use the flow function to compute the dataflow analysis information at the
program point immediately after that node from the information we had at the program point
before that node. To demonstrate, consider the following simple program (left), with its control
flow graph (middle):

1 : x :“ 0
2 : y :“ 1
3 : z :“ y
4 : y :“ z ` x
5 : x :“ y ´ z

x y z
P1 ? ? ?
P2 Z ? ?
P3 Z N ?
P4 Z N N
P5 Z N N
P6 J N N

For such simple code, we can track analysis information using a table with a column for each
program variable and a row for each program point (right, above).

The first thing to notice is that, because flow functions operate on the abstract state for the
program point immediately before a node, we need some kind of initial assumption (this confusion
is illustrated by the ? in the cells of the table). We will return to this point in a moment, since those
values don’t influence the analysis for such simple, straight-line code.

Notice also that the analysis is imprecise at the end with respect to the value of x. We were
able to keep track of which values are zero and nonzero quite well through instruction 4, using (in
the last case) the flow function that knows that adding a variable known to be zero is equivalent
to a copy. However, at instruction 5, the analysis does not know that y and z are equal, and
so it cannot determine whether x will be zero. Because the analysis is not tracking the exact
values of variables, but rather approximations, it will inevitably be imprecise in certain situations.
However, in practice, well-designed approximations can often allow dataflow analysis to compute
quite useful information.

3

2.2 Alternative Paths: Illustration

Things get more interesting in WHILE3ADDR code that contains if statements. An if statement
introduces two possible paths through the program. Consider the following simple example (left),
and its CFG (middle).2 We will begin by analyzing the first node as though the branch is not taken:

1 : if x “ 0 goto 4
2 : y :“ 0
3 : goto 6
4 : y :“ 1
5 : x :“ 1
6 : z :“ y

x y z

P1 ? ? ?
P2 NF ? ?
P3 N Z ?
P4 N Z ?
P5
P6
P7 N? Z? ??
P8 N?? Z?? Z??

In the table above, the entry for x at P2 indicates the abstract value produced for the false
condition on the branch, which is then used as input to analyze instruction 2 (and produce the state
at P3). We can go right from P3 to P4 without any complexity. But, if we just continue “simulating”
execution, we get to P7. It has two possible incoming edges, so two possible incoming states to
use for the flow function for instruction 6. What to do? We have not yet analyzed a path through
lines 4 and 5. The table shows the (questionable) values if we just use the state coming from P4 as
“incoming” at instruction 6, and ignore what might have happened along that other path.

Perhaps turning to that alternative path, will give answers. Let’s analyze instructions 4 and 5
as if we had taken the true branch at instruction 1:

2A point on diagrams: in the interest of clarity, we sometimes elide program points between nodes when we can.
That is, in this example,, the state going into instruction 3 is exactly the state coming out of instruction 2, so we label
a single program point P3. However, when we need to consider multiple paths to determine the incoming state at a
node, we often need differentiate the two program points in our CFG diagrams.

4

x y z
P1 ? ? ?
P2 ZT , NF ? ?
P3 N Z ?
P4 N Z ?
P5 Z ? ?
P6 Z N ?
P7 N N? ? note: different!
P8 N?? N?? N?? ??????

We have a dilemma. The first time we analyzed instruction 6, the incoming state had come
from instruction 3, where x was nonzero and y was zero. Now have, the incoming state coming
from instruction 5 is different: x is still nonzero, but so is y!

We resolve this dilemma by combining the abstract values computed along the two paths for
y. The incoming abstract values at P7 for y are N and Z. We represent this uncertainty with a
new abstract value J (pronounced “top”). This value indicates that we do know know if y is
zero or not, because we don’t know how we reached this program location. We can apply similar
logic to x, but because x is nonzero on both incoming paths, we can maintain our knowledge
that x is nonzero. Thus, we should analyze instruction 6 with this combined incoming state:
tx ÞÑ N, y ÞÑ Ju.

The corrected analysis, showing the combined state at P6, looks like:

x y z
P1 ? ? ?
P2 ZT , NF ? ?
P3 N Z ?
P4 N Z ?
P5 Z ? ?
P6 Z N ?
P7 N J ? combined with P4
P8 N J J corrected

5

3 Join

The mechanism for combining analysis results along multiple paths is called a join operation, \.
When taking two abstract values l1, l2 P L, the result of l1\l2 is an abstract value lj that generalizes
both l1 and l2.

To precisely define what “generalizes” means, we define a partial order Ď over abstract values,
and say that l1 and l2 are at least as precise as lj , written l1 Ď lj . Recall that a partial order is any
relation that is:

• reflexive: @l : l Ď l
• transitive: @l1, l2, l3 : l1 Ď l2 ^ l2 Ď l3 ñ l1 Ď l3
• anti-symmetric: @l1, l2 : l1 Ď l2 ^ l2 Ď l1 ñ l1 “ l2

A set of values L that is equipped with a partial order Ď, and for which the least upper bound
of any two values in that ordering l1 \ l2 is unique and is also in L, is called a join-semilattice. Any
join-semilattice has a maximal element J (pronounced “top”). We require that the abstract values
used in dataflow analyses form a join-semilattice. We will use the term lattice for short; as we will
see below, this is the correct terminology for most dataflow analyses anyway. For zero analysis,
we define the partial order with Z Ď J and N Ď J, where Z \N “ J.

We have now considered all the elements necessary to define a dataflow analysis:
• a lattice pL,Ďq
• an abstraction function α
• a flow function f
• initial dataflow analysis assumptions, σ0
Note that the theory of lattices answers that side question that came up in the very first exam-

ple: what should we assume about the value of input variables (the question marks in our example
tables)? If we do not know anything about the value x can be, one good choice is to assume it can
be anything. That is, in the initial environment σ0, variables’ initial state is mapped to J.

3.1 Dataflow analysis of loops

We now consider WHILE3ADDR programs with loops. Our intuition above, which simply ana-
lyzed the two paths induced by the if statement separately, no longer works so well. A loop
produces a potentially unbounded number of program paths, and we want our analysis to take
only bounded time. Consider the following simple looping example:3

3I provide the CFG for reference but omit the annotations in the interest of a cleaner diagram. Notice that I differen-
tiate P2 and P3 because of the join, as well as P7 and P8, since they don’t both come from instruction 6.

6

1 : x :“ 10
2 : y :“ 0
3 : if x “ 0 goto 7
4 : y :“ 1
5 : x :“ x´ 1
6 : goto 3
7 : x :“ y

x y
P0 J J

P1 N J

P2 N Z
P3 N Z first time through...
P4 NF Z
P5 N N
P6 J N
P7 J N
P8 Zt N first time through...
P9 N N first time through...

The right-hand side above shows the straightforward straight-line analysis of the path that
runs the loop exactly once. Thinking back to our handling of if above, we might now reconsider
instruction 3, joining the states at P2 and P7 to create a new P3. For x,N\J “ J. For y, Z\N “ J.
This changes the incoming values at instruction 3. We can now choose between two paths once
again. We will choose (arbitrarily, for now) to stay within the loop, and reconsider instruction 4.
We have new incoming information (at P4, where both x and y are now J). But, since instruction
4 assigns 1 to y, we still know that y is nonzero at P5. The updated input data does not change the
analysis results at P5.

A quick check shows that going through the remaining instructions in the loop, even back to
instruction 3, the analysis information will no longer change. That is because the flow functions
are deterministic: given the same input analysis information and the same instruction, they will
produce the same output analysis information.

We say that the dataflow analysis has reached a fixed point (or fixpoint). In mathematics, a
fixed point of a function is a data value v that is mapped to itself by the function, i.e., fpvq “ v.
In analysis, the mathematical function is the flow function, and the fixed point is a tuple of the
dataflow analysis values at each program point. If we invoke the flow function on the fixed point,
the analysis results do not change (we get the same fixed point back).

Once we have reached a fixed point for the loop, further analysis of the loop will not be useful.
Therefore, we will proceed to analyze statement 7. The final analysis results are as follows:

7

x y
P0 J J

P1 N J

P2 N Z
P3 J J join
P4 NF J updated
P5 N N already at fixed point
P6 J N already at fixed point
P7 J N already at fixed point
P8 ZT J updated
P9 J J updated

Quickly simulating a run of the program program shows that these results correctly approx-
imate actual execution. The uncertainty in the value of x at P6 and P7 is real: x is nonzero after
these instructions, except the last time through the loop, when it is zero. The uncertainty in the
value of y at the end shows analysis imprecision: this loop always executes at least once, so y will
be nonzero at these points. However, the analysis (as currently formulated) cannot tell this for
certain, so it reports that it cannot tell if y is zero or not. This is safe—it is always correct to say the
analysis is uncertain—but not as precise as would be ideal.

The benefit of analysis, however, is that we can gain correct information about all possible
executions of the program with only a finite amount of work. In our example, we only had to
analyze the loop statements at most twice each before reaching a fixed point. This is a significant
improvement over the actual program execution, which runs the loop 10 times. We sacrificed
precision in exchange for coverage of all possible executions, a classic tradeoff.

How can we be confident that the results of the analysis are correct, besides simulating every
possible run of a (possibly very complex) program? The intuition behind correctness is the invari-
ant that at each program point, the analysis results approximate all the possible program values
that could exist at that point. If the analysis information at the beginning of the program correctly
approximates the program arguments, then the invariant is true at the beginning of program ex-
ecution. One can then make an inductive argument that the invariant is preserved. In particular,
when the program executes an instruction, the instruction modifies the program’s state. As long
as the flow functions account for every possible way that instruction can modify state, then at
the analysis fixed point they will have correctly approximated actual program execution. We will
make this argument more precise in a future lecture.

3.2 A convenience: the K abstract value and complete lattices

To define an algorithm for dataflow anlaysis more precisely, we need to be more concrete about
how to compute incoming states for CFG nodes with multiple incoming edges (like instruction
3, above). We’ve been ignoring these in our “one path at a time” approach so far, but this is a
handwave for didactic purposes.

Instead, it is more precise and consistent to say that analyzing an instruction always uses the
incoming dataflow analysis information from all instructions that could precede it. However, for
instruction 3, this requires a dataflow value from instruction 6, even if instruction 6 has not yet
been analyzed. We could do this if we had a dataflow value that is always ignored when it is joined
with any other dataflow value. In other words, we need a abstract dataflow value K (pronounced
“bottom”) such that K\ l “ l.

8

K plays a dual role to the value J: it sits at the bottom of the dataflow value lattice. For all l,
we have the identity l Ď J and correspondingly K Ď l. There is an greatest lower bound operator
meet, [, which is dual to \. The meet of all dataflow values is K.

A set of values L that is equipped with a partial order Ď, and for which both least upper
bounds \ and greatest lower bounds [exist in L and are unique, is called a complete lattice.

This provides an elegant solution to the problem mentioned above. We initialize σ at every
program point in the program, except at entry, to K, indicating that the instruction there has not
yet been analyzed. We can then always merge all input values to a node, whether or not the sources
of those inputs have been analysed, because we know that any K values from unanalyzed sources
will simply be ignored by the join operator \, and that if the dataflow value for that variable will
change, we will get to it before the analysis is completed.

4 Analysis execution strategy

Our informal strategy above, which considers all paths until the dataflow analysis information
reaches a fixed point, can be simplified. The argument for correctness outlined above implies
that for correct flow functions, it doesn’t matter how we get to the analysis fixed point (it would
be surprising if analysis correctness depended on which branch of an if statement we explored
first!). It is in fact possible to run the analysis on program instructions in any order we choose. As
long as we continue doing so until a reaching a fixed point, the final result will be correct. The
simplest correct algorithm for executing dataflow analysis can therefore be stated as follows:

for Node n in cfg
results[n] = K

results[0] = initialDataflowInformation

while not at fixed point
pick a node n in program
input = join { results[j] | j in predecessors(n) }
output = flow(n, input)
results[n] = output

Or, equivalently:

for Node n in cfg
input[n] = K

input[0] = initialDataflowInformation

while not at fixed point
pick a node n in program
output = flow(n, input[n])
for Node j in sucessors(n)

input[j] = input[j] \ output

In the code above, the termination condition is expressed abstractly (“not at fixed point”). It
can easily be checked by keeping track, when we process each node, whether the new results have
changed compared to what we previously had stored for that node. If the results do not change
for any node, the analysis has reached a fix point.

How do we know the algorithm will terminate? The intuition is as follows. We rely on the
choice of a node to be fair, so that each node is eventually considered. As long as the analysis

9

is not at a fixed point, some node can be analyzed to produce new results. If our flow functions
are well-behaved (technically, if they are monotone, as we will discuss in a future lecture) then
each time the flow function runs on a given node, either the results do not change, or they get
become more approximate (i.e., they are higher in the lattice). Later runs of the flow function
consider more possible paths through the program and therefore produce a more approximate
result which considers all these possibilities. If the lattice is of finite height—meaning there are at
most a finite number of steps from any place in the lattice going up towards the J value—then
this process must terminate eventually. More concretely: once an abstract value is computed to be
J, it will stay J no matter how many times the analysis is run. The abstraction only flows in one
direction.

Although the simple algorithm above always terminates and results in the correct answer, it
is still not always the most efficient. Typically, for example, it is beneficial to analyze the program
instructions in order, so that results from earlier instructions can be used to update the results
of later instructions. It is also useful to keep track of a list of instructions for which there has
been a change since the instruction was last analyzed in the result dataflow information of some
predecessor. Only those instructions need be analyzed; reanalyzing other instructions is useless
since their input has not changed. Kildall captured this intuition with his worklist algorithm,
described in pseudocode as:

for Node n in program
input[n] = K

input[0] = initialDataflowInformation
worklist = { firstNode }

while worklist is not empty
take a Node n off the worklist
output = flow(n, input[n])
for Node j in succs(n)

if output Ď input[j]
input[j] = input[j] \ output
add j to worklist

The algorithm above is very close to the generic algorithm declared previously, except the worklist
that chooses the next instruction to analyze and determines when a fixed point is reached.

We can reason about the performance of this algorithm as follows. We only add a node to the
worklist when the input data to it changes. The input for a given node can only change h times,
where h is the height of the lattice. Thus we add at most n ˚ h nodes to the worklist, where n
is the number of nodes/instructions in the program. After running the flow function for a node,
however, we must test all its successors to find out if their input has changed. This test is done
once for each edge, for each time that the source node of the edge is added to the worklist: thus
at most e ˚ h times, where e is the number of control flow edges in the successor graph between
instructions. If each operation (such as a flow function,\, or Ď test) has cost Opcq, then the overall
cost is Opc ˚ pn` eq ˚ hq, or Opc ˚ e ˚ hq because n is bounded by e.

The algorithm above is still abstract: We have not defined the operations to add and remove
instructions from the worklist. We would like adding to the work list to be a set addition operation,
so that no instruction appears in it multiple times. If we have just analysed the program with
respect to an instruction, analyzing it again will not produce different results.

That leaves a choice of which instruction to remove from the worklist. We could choose among
several policies, including last-in-first-out (LIFO) order or first-in-first-out (FIFO) order. In prac-

10

tice, the most efficient approach is to identify the strongly-connected components (i.e. loops) in
the control flow graph of components and process them in topological order, so that loops that are
nested, or appear in program order first, are solved before later loops. This works well because
we do not want to do a lot of work bringing a loop late in the program to a fixed point, then have
to redo that work when dataflow information from an earlier loop changes.

Within each loop, the instructions should be processed in reverse postorder, the reverse of the
order in which each node is last visited when traversing a tree. Consider the example from Sec-
tion 2.2 above, in which instruction 1 is an if test, instructions 2–3 are the then branch, instructions
4–5 are the else branch, and instruction 6 comes after the if statement. A tree traversal might go
as follows: 1, 2, 3, 6, 3 (again), 2 (again), 1 (again), 4, 5, 4 (again), 1 (again). Some instructions in
the tree are visited multiple times: once going down, once between visiting the children, and once
coming up. The postorder, or order of the last visits to each node, is 6, 3, 2, 5, 4, 1. The reverse
postorder is the reverse of this: 1, 4, 5, 2, 3, 6. Now we can see why reverse postorder works well:
we explore both branches of the if statement (4–5 and 2–3) before we explore node 6. This ensures
that we do not have to reanalyze node 6 after one of its inputs changes.

Although analyzing code using the strongly-connected component and reverse postorder heuris-
tics improves performance substantially in practice, it does not change the worst-case performance
results described above.

11

