
Lecture Notes: Program Semantics

17-355/17-665/17-819: Program Analysis (Spring 2020)
Claire Le Goues∗

clegoues@cs.cmu.edu

1 Operational Semantics

To reason about analysis correctness, we need a clear definition of what a program means. One way
to do this is using natural language (e.g., the Java Language Specification). However, although
natural language specifications are accessible, they are also often imprecise. This can lead to many
problems, including incorrect compiler implementations or program analyses.

A better alternative is a formal definition of program semantics. We begin with operational
semantics, which mimics, at a high level, the operation of a computer executing the program. Such
a semantics also reflects the way that techniques such as dataflow analysis or Hoare Logic reason
about the program, so it is convenient for our purposes.

There are two broad classes of operational semantics: big-step operational semantics, which spec-
ifies the entire operation of a given expression or statement; and small-step operational semantics,
which specifies the operation of the program one step at a time.

1.1 WHILE: Big-step operational semantics

We’ll start by restricting our attention to arithmetic expressions, for simplicity. What is the mean-
ing of a WHILE expression? Some expressions, like a natural number, have a very clear meaning:
The “meaning” of 5 is just, well, 5. But what about x + 5? The meaning of this expression clearly
depends on the value of the variable x. We must abstract the value of variables as a function from
variable names to integer values:

E ∈ Var→ Z

Here E denotes a particular program state. The meaning of an expression with a variable like x+5
involves “looking up” the x’s value in the associated E, and substituting it in. Given a state, we
can write a judgement as follows:

〈a,E〉 ⇓ n

This means that given program state E, the expression e evaluates to n. This formulation is called
big-step operational semantics; the ⇓ judgement relates an expression and its “meaning.”1 We then
build up the meaning of more complex expressions using rules of inference (also called derivation

∗These notes were developed together with Jonathan Aldrich
1Note that I have chosen ⇓ because it is a common notational convention; it’s not otherwise special. This is true for

many notational choices in formal specification.

1



or evaluation rules). An inference rule is made up of a set of judgments above the line, known as
premises, and a judgment below the line, known as the conclusion. The meaning of an inference
rule is that the conclusion holds if all of the premises hold:

premise1 premise2 . . . premisen
conclusion

An inference rule with no premises is an axiom, which is always true. For example, integers always
evaluate to themselves, and the meaning of a variable is its stored value in the state:

〈n,E〉 ⇓ n
big-int

〈x,E〉 ⇓ E(x)
big-var

Addition expressions illustrate a rule with premises:

〈a1, E〉 ⇓ n1 〈a2, E〉 ⇓ n2

〈a1 + a2, E〉 ⇓ n1 + n2
big-add

But, how does the value of x come to be “stored” in E? For that, we must consider WHILE

Statements. Unlike expressions, statements have no direct result. However, they can have side
effects. That is to say: the “result” or meaning of a Statement is a new state. The judgement ⇓ as
applied to statements and states therefore looks like:

〈S,E〉 ⇓ E′

This allows us to write inference rules for statements, bearing in mind that their meaning is not
an integer, but a new state. The meaning of skip, for example, is an unchanged state:

〈skip, E〉 ⇓ E
big-skip

Statement sequencing, on the other hand, does involve premises:

〈S1, E〉 ⇓ E′ 〈S2, E
′〉 ⇓ E′′

〈S1;S2, E〉 ⇓ E′′
big-seq

The if statement involves two rules, one for if the boolean predicate evaluates to true (rules
for boolean expressions not shown), and one for if it evaluates to false. I’ll show you just the
first one for demonstration:

〈P,E〉 ⇓ true 〈S1, E〉 ⇓ E′

〈if P then S1 else S2, E〉 ⇓ E′
big-iftrue

What should the second rule for if look like?

This brings us to assignments, which produce a new state in which the variable being assigned to
is mapped to the value from the right-hand side. We write this with the notation E[x 7→ n], which
can be read “a new state that is the same as E except that x is mapped to n.”

〈a,E〉 ⇓ n

〈x := a,E〉 ⇓ E[x 7→ n]
big-assign

Note that the update to the state is modeled functionally; the variable E still refers to the old
state, while E[x 7→ n] is the new state represented as a mathematical map.

2



Fully specifying the semantics of a language requires a judgement rule like this for every lan-
guage construct. These notes only include a subset for WHILE, for brevity.

Exercise 1. What are the rule(s) for while?

1.2 WHILE: Small-step operational semantics

Big-step operational semantics has its uses. Among other nice features, it directly suggests a sim-
ple interpreter implementation for a given language. However, it is difficult to talk about a state-
ment or program whose evaluation does not terminate. Nor does it give us any way to talk about
intermediate states (so modeling multiple threads of control is out).

Sometimes it is instead useful to define a small-step operational semantics, which specifies pro-
gram execution one step at a time. We refer to the pair of a statement and a state (〈S,E〉) as
a configuration. Whereas big step semantics specifies program meaning as a function between a
configuration and a new state, small step models it as a step from one configuration to another.

You can think of small-step semantics as a set of rules that we repeatedly apply to configura-
tions until we reach a final configuration for the language (〈skip, E〉, in this case) if ever.2 We write
this new judgement using a slightly different arrow: →. 〈S,E〉 → 〈S′, E′〉 indicates one step of ex-
ecution; 〈S,E〉 →∗ 〈S′, E′〉 indicates zero or more steps of execution. We formally define multiple
execution steps as follows:

〈S,E〉 →∗ 〈S,E〉
multi-reflexive

〈S,E〉 → 〈S′, E′〉 〈S′, E′〉 →∗ 〈S′′, E′′〉
〈S,E〉 →∗ 〈S′′, E′′〉 multi-inductive

To be complete, we should also define auxiliary small-step operators→a and→b for arithmetic
and boolean expressions, respectively; only the operator for statements results in an updated state
(as in big step). The types of these judgements are thus:

→ : (Stmt× E)→ (Stmt× E)
→a : (Aexp× E)→ Aexp

→b : (Bexp× E)→ Bexp

We can now again write the semantics of a WHILE program as new rules of inference. Some rules
look very similar to the big-step rules, just with a different arrow. For example, consider variables:

〈x,E〉 →a E(x)
small-var

Things get more interesting when we return to statements. Remember, small-step semantics ex-
press a single execution step. So, consider an if statement:

〈P,E〉 →b P ′

〈if P then S1 else S2, E〉 → 〈if P ′ then S1 else S2, E〉
small-if-congruence

〈if true then S1 else S2, E〉 → 〈S1, E〉
small-iftrue

2Not all statements reach a final configuration, like while true do skip.

3



Exercise 2. We have again omitted the small-iffalse case, as well as rule(s) for while, as exercises
to the reader.

Note also the change for statement sequencing:

〈S1, E〉 → 〈S′1, E′〉
〈S1;S2, E〉 → 〈S′1;S2, E

′〉
small-seq-congruence

〈skip;S2, E〉 → 〈S2, E〉
small-seq

1.3 WHILE3ADDR: Small-step semantics

The ideas behind big- and small-step operational semantics are consistent across languages, but
the way they are written can vary based on what is notationally convenient for a particular lan-
guage or analysis. WHILE3ADDR is slightly different from WHILE, so beyond requiring different
rules for its different constructs, it makes sense to modify our small-step notation a bit for defining
the meaning of a WHILE3ADDR program.

First, let’s revisit the configuration to account for the slightly different meaning of a WHILE3ADDR

program. As before, the configuration must include the state, which we still call E, mapping vari-
ables to values. However, a well-formed, terminating WHILE program was effectively a single
statement that can be iteratively reduced to skip; a WHILE3ADDR program, on the other hand, is
a mapping from natural numbers to program instructions. So, instead of a statement that is being
reduced in steps, the WHILE3ADDR c must includes a program counter n, representing the next
instruction to be executed.

Thus, a configuration c of the abstract machine for WHILE3ADDR must include the stored
program P (which we will generally treat implicitly), the state environment E, and the current
program counter n representing the next instruction to be executed (c ∈ E × N). The abstract
machine executes one step at a time, executing the instruction that the program counter points to,
and updating the program counter and environment according to the semantics of that instruction.

This adds a tiny bit of complexity to the inference rules, because they must explicitly consider
the mapping between line number/labels and program instructions. We represent execution of
the abstract machine via a judgment of the form P ` 〈E,n〉 ; 〈E′, n′〉 The judgment reads:
“When executing the program P , executing instruction n in the state E steps to a new state E′ and
program counter n′.”3 To see this in action, consider a simple inference rule defining the semantics
of the constant assignment instruction:

P [n] = x := m

P ` 〈E,n〉; 〈E[x 7→ m], n+ 1〉
step-const

This states that in the case where the nth instruction of the program P (looked up using P [n])
is a constant assignment x := m, the abstract machine takes a step to a state in which the state E
is updated to map x to the constant m, written as E[x 7→ m], and the program counter now points
to the instruction at the following address n+ 1. We similarly define the remaining rules:

3I could have used the same→ I did above instead of ;, but I don’t want you to mix them up.

4



P [n] = x := y

P ` 〈E,n〉; 〈E[x 7→ E[y]], n+ 1〉
step-copy

P [n] = x := y op z E[y] op E[z] = m

P ` 〈E,n〉; 〈E[x 7→ m], n+ 1〉
step-arith

P [n] = goto m

P ` 〈E,n〉; 〈E,m〉
step-goto

P [n] = if x opr 0 goto m E[x] opr 0 = true

P ` 〈E,n〉; 〈E,m〉
step-iftrue

P [n] = if x opr 0 goto m E[x] opr 0 = false

P ` 〈E,n〉; 〈E,n+ 1〉
step-iffalse

1.4 Derivations and provability

Among other things, we can use operational semantics to prove that concrete program expressions
will evaluate to particular values. We do this by chaining together rules of inference (which simply
list the hypotheses necessary to arrive at a conclusion) into derivations, which interlock instances
of rules of inference to reach particular conclusions. For example:

〈4, E1〉 ⇓ 4 〈2, E1〉 ⇓ 2

〈4 ∗ 2, E1〉 ⇓ 8 〈6, E1〉 ⇓ 6

〈(4 ∗ 2)− 6, E1〉 ⇓ 2

We say that 〈a,E〉 ⇓ n is provable (expressed mathematically as ` 〈a,E〉 ⇓ n) if there exists a
well-formed derivation with 〈a,E〉 ⇓ n as its conclusion. “Well formed” simply means that every
step in the derivation is a valid instance of one of the rules of inference for this system.

A proof system like our operational semantics is complete if every true statement is provable.
It is sound (or consistent) if every provable judgement is true.

2 Proof techniques using operational semantics

A precise language specification lets us precisely prove properties of our language or programs
written in it (and analyses of those programs!). Note that this exposition primarily uses big-step
semantics to illustrate, but the concepts generalize.

Well-founded induction. A key family of proof techniques in programming languages is based
on induction. You may already be familiar with mathematical induction. As a reminder: if P (n) is
a property of the natural numbers that we want to show holds for all n, mathematical induction
says that it suffices to show that P (0) is true (the base case), and then that if P (m) is true, then so is
P (m+ 1) for any natural number m (the inductive step). This works because there are no infinite
descending chains of natural numbers. So, for any n, P (n) can be obtained by simply starting
from the base case and applying n instances of the inductive step.

Mathematical induction is a special case of well-founded induction, a general, powerful proof
principle that works as follows: a relation ≺ ⊆ A × A is well-founded if there are no infinite

5



descending chains in A. If so, to prove ∀x ∈ A.P (x) it is enough to prove ∀x ∈ A.[∀y ≺ x ⇒
P (y)] ⇒ P (x); the base case arises when there is no y ≺ x, and so the part of the formula within
the brackets [] is vacuously true.4

Structural induction. Structural induction is another special case of well-founded induction where
the ≺ relation is defined on the structure of a program or a derivation. For example, consider
the syntax of arithmetic expressions in WHILE, Aexp. Induction on a recursive definition like this
proves a property about a mathematical structure by demonstrating that the property holds for all
possible forms of that structure. We define the relation a ≺ b to hold if a is a substructure of b. For
Aexp expressions, the relation ≺ ⊆ Aexp× Aexp is:

a1 ≺ a1 + a2

a1 ≺ a1 ∗ a2
a2 ≺ a1 + a2

a2 ≺ a1 ∗ a2
. . . etc., for all arithmetic operators opa

To prove that a property P holds for all arithmetic expressions in WHILE (or, ∀a ∈ Aexp.P (a)),
we must show P holds for both the base cases and the inductive cases. a is a base case if there is
no a′ such that a′ ≺ a; a is an inductive case if ∃a′ . a′ ≺ a. There is thus one proof case per form of
the expression. For Aexp, the base cases are:

` ∀n ∈ Z . P (n)

` ∀x ∈ Vars . P (x)

And the inductive cases:

` ∀a1, a2 ∈ Aexp . P (a1) ∧ P (a2)⇒ P (a1 + a2)

` ∀a1, a2 ∈ Aexp . P (a1) ∧ P (a2)⇒ P (a1 ∗ a2)
. . . and so on for the other arithmetic operators. . .

Example. Let L(a) be the number of literals and variable occurrences in some expression a and O(a)
be the number of operators in a. Prove by induction on the structure of a that ∀a ∈ Aexp . L(a) =
O(a) + 1:

Base cases:
• Case a = n. L(a) = 1 and O(a) = 0
• Case a = x. L(a) = 1 and O(a) = 0

Inductive case 1: Case a = a1 + a2
• By definition, L(a) = L(a1) + L(a2) and O(a) = O(a1) +O(a2) + 1.
• By the induction hypothesis, L(a1) = O(a1) + 1 and L(a2) = O(a2) + 1.
• Thus, L(a) = O(a1) +O(a2) + 2 = O(a) + 1.

The other arithmetic operators follow the same logic.

4Mathematical induction as a special case arises when ≺ is simply the predecessor relation ((x, x+ 1)|x ∈ N).

6



Other proofs for the expression sublanguages of WHILE can be similarly conducted. For ex-
ample, we could prove that the small-step and big-step semantics will obtain equivalent results
on expressions:

∀a ∈ AExp . 〈a,E〉 →∗a n⇔ 〈a,E〉 ⇓ n

The actual proof is left as an exercise, but note that this works because the semantics rules for
expressions are strictly syntax-directed: the meaning of an expression is determined entirely by
the meaning of its subexpressions, the structure of which guides the induction.

Induction on the structure of derivations. Unfortunately, that last statement is not true for state-
ments in the WHILE language. For example, imagine we’d like to prove that WHILE is deterministic
(that is, if a statement terminates, it always evaluates to the same value). More formally, we want
to prove that:

∀a ∈ Aexp . ∀E . ∀n, n′ ∈ N . 〈a,E〉 ⇓ n ∧ 〈a,E〉 ⇓ n′ ⇒ n = n′ (1)
∀P ∈ Bexp . ∀E . ∀b, b′ ∈ B . 〈P,E〉 ⇓ b ∧ 〈P,E〉 ⇓ b′ ⇒ b = b′ (2)
∀S . ∀E,E′, E′′ . 〈S,E〉 ⇓ E′ ∧ 〈S,E〉 ⇓ E′′ ⇒ E′ = E′′ (3)

We can’t prove the third statement with structural induction on the language syntax because
the evaluation of statements (like while) does not depend only on the evaluation of its subexpres-
sions.

Fortunately, there is another way. Recall that the operational semantics assign meaning to pro-
grams by providing rules of inference that allow us to prove judgements by making derivations.
Derivation trees (like the expression trees we discussed above) are also defined inductively, and
are built of sub-derivations. Because they have structure, we can again use structural induction,
but here, on the structure of derivations.

Instead of assuming (and reasoning about) some statement S, we instead assume a derivation
D :: 〈S,E〉 ⇓ E′ and induct on the structure of that derivation (we define D :: Judgement to mean
“D is the derivation that proves judgement.” e.g., D :: 〈x + 1, E〉 ⇓ 2). That is, to prove that
property P holds for a statement, we will prove that P holds for all possible derivations of that
statement. Such a proof consists of the following steps:
Base cases: show that P holds for each atomic derivation rule with no premises (of the form S).
Inductive cases: For each derivation rule of the form

H1...Hn

S

By the induction hypothesis, P holds for Hi, where i = 1 . . . n. We then have to prove that the
property is preserved by the derivation using the given rule of inference.

A key technique for induction on derivations is inversion. Because the number of forms of
rules of inference is finite, we can tell which inference rules might have been used last in the
derivation. For example, given D :: 〈x := 55, Ei〉 ⇓ E, we know (by inversion) that the assignment
rule of inference must be the last rule used in D (because no other rules of inference involve an
assignment statement in their concluding judgment). Similarly, if D :: 〈while P do S,Ei〉 ⇓ E,
then (by inversion) the last rule used in D was either the while-true rule or the while-false
rule.

Given those preliminaries, to prove that the evaluation of statements is deterministic (equation
(3) above), pick arbitrary S,E,E′, and D :: 〈S,E〉 ⇓ E′

7



Proof: by induction of the structure of the derivation D, which we define D :: 〈S,E〉 ⇓ E′.

Base case: the one rule with no premises, skip:

D :: 〈skip, E〉 ⇓ E

By inversion, the last rule used in D′ (which, again, produced E′′) must also have been the rule
for skip. By the structure of the skip rule, we know E′′ = E.

Inductive cases: We need to show that the property holds when the last rule used in D was each
of the possible non-skip WHILE commands. I will show you one representative case; the rest are
left as an exercise. If the last rule used was the while-true statement:

D ::

D1 :: 〈P,E〉 ⇓ true D2 :: 〈S,E〉 ⇓ E1 D3 :: 〈while P do S,E1〉 ⇓ E′

〈while P do S,E〉 ⇓ E′

Pick arbitrary E′′ such that D′′ :: 〈while P do S,E〉 ⇓ E′′

By inversion, and determinism of boolean expressions, D′′must also use the same while-true
rule. So D′′ must also have subderivations D′′2 :: 〈S,E〉 ⇓ E′′1 and D′′3 :: 〈while P do S,E′′1 〉 ⇓ E′′.
By the induction hypothesis on D2 with D′′2 , we know E1 = E′′1 . Using this result and the induction
hypothesis on D3 with D′′3 , we have E′′ = E′.

8


