
Homework 7: Symbolic and Concolic Execution

17-355/17-665/17-819: Program Analysis
Claire Le Goues∗

clegoues@cs.cmu.edu

Due: Thursday, April 2 11:59 pm

100 points total

Assignment Objectives:
• Demonstrate understanding of specifications for verifying programs.
• Understand soundness criteria for substituting subexpressions of a path condition with concrete

values in concolic execution
• Understand Symbolic Execution and Implement Forward Verification Condition Generation for

symbolically executed paths.

Setup. Clone the starter repository here: https://classroom.github.com/a/EMQiv2z8

Handin Instructions. Please submit your assignment via Gradescope by pointing it to your
GitHub repository by the due date. You should replace written-answers.pdf with your writ-
ten answers to questions 1 and 2 and update the signed*.py files to complete question 3.

Note: We will not look at your homework repository directly, but will only see what you have submitted
to Gradescope! Make sure that you (re)submit after you have completed all parts; Gradescope does
not automatically pull new commits from GitHub.

Question 1, Verifying with Dafny, (30 points). Dafny is a programming language with built-in
specification constructs. For example, Dafny lets you specify pre- and post conditions on meth-
ods, and will verify that your code meets the specification. Underneath the hood, Dafny dis-
charges SMT formulas based on the program and specifications, and validates correctness us-
ing, e.g., Z3. The online tutorial for Dafny is a good resource for examples and getting started:
https://rise4fun.com/Dafny/tutorial/Guide. Note, however, that you do not need to write
or understand much Dafny to complete this question, which primarily concerns specification/verification.

Consider the bubble sort program written in Dafny in Figure 1 (also at https://rise4fun.
com/Dafny/1xSS and in the bubblesort.dfy file in the homework repository). By writing
specifications in Dafny, we can verify the correctness of bubble sort (i.e., that it always returns
a sorted list). Take some time to understand the program and the existing specifications, then
answer the following questions.

∗This homework was developed together with Jonathan Aldrich

1

https://classroom.github.com/a/EMQiv2z8
https://rise4fun.com/Dafny/tutorial/Guide
https://rise4fun.com/Dafny/1xSS
https://rise4fun.com/Dafny/1xSS


0 predicate sorted(a: array?<int>, l: int, u: int)
1 reads a
2 requires a 6= null
3 {
4 ∀ i, j • 0 ≤ l ≤ i ≤ j ≤ u < a.Length =⇒ __FIXME__
5 }
6
7 predicate partitioned(a: array?<int>, i: int)
8 reads a
9 requires a 6= null

10 {
11 ∀ k, k’ • 0 ≤ k ≤ i < k’ < a.Length =⇒ a[k] ≤ a[k’]
12 }
13
14 method BubbleSort(a: array?<int>)
15 modifies a
16 requires a 6= null
17 ensures sorted(a, 0, a.Length-1)
18 {
19 var i := a.Length - 1;
20 while(i > 0)
21 invariant 0 < i < a.Length
22 invariant sorted(a, i, a.Length-1)
23 invariant partitioned(a, i)
24 {
25 var j := 0;
26 while (j < i)
27 invariant 0 < i < a.Length ∧ 0 ≤ j ≤ i
28 invariant sorted(a, i, a.Length-1)
29 invariant partitioned(a, i)
30 invariant ∀ k • 0 ≤ k ≤ j =⇒ a[k] ≤ a[j]
31 {
32 if(a[j] > a[j+1])
33 {
34 a[j], a[j+1] := a[j+1], a[j];
35 }
36 j := j + 1;
37 }
38 i := i -1;
39 }
40 }
41
42 method Main() {
43 var a := new int[5];
44 a[0], a[1], a[2], a[3], a[4] := 9, 4, 6, 3, 8;
45 BubbleSort(a);
46 var k := 0;
47 while(k < 5) { print a[k], "\n"; k := k + 1; }
48 }

Figure 1: Incomplete Dafny bubble sort.

2



a) (5 points) The predicate sorted is incomplete. What should be substituted for FIXME on
line 5?

b) (10 points) After adding the condition for part a), run Dafny again. Dafny still unable to prove
the program correct due to a loop invariant. It gives two errors: This loop invariant might
not hold on entry and This loop invariant might not be maintained by the loop.

Correct the reported loop invariant so that Dafny no longer reports the case where the loop
invariant might not be maintained by the loop. Write out the code/invariant you
changed in your assignment, and explain in prose why the original loop invariant was insufficient.

c) (15 points) After fixing the loop invariant in part b), Dafny still reports that the correct loop
invariant might not hold on entry. Explain in prose why this is the case.

Dafny will verify the complete implementation with some changes that deal with the condition
on loop entry. One way is to add an additional invariant. Another way is to change the program
so that Dafny infers stronger conditions on variable(s).

Either add a single invariant or make a small change the program so that Dafny verifies the
program. Rerun Dafny and confirm that it verifies the program with no warnings. Describe the
change you made. both?

Question 2, Concolic execution soundness, (20 points). In class (and in the notes) we saw an
example of a path condition g and a sound concolic replacement g′ for it. In particular, g was
x0 == (y0 ∗ y0) % 50 after negation and g′ was x0 == 49 after negation. This is trivially sound
because the only solution is x0 == 49, which when extended with y0 == 7 from the original test
case yields a new test input that fulfills the original path condition x0 == (y0 ∗ y0) % 50.

• Give an example path condition g, test input M , and concolic path condition g′ resulting
from replacing a subexpression as of g with a concrete value n = [M ]as, such that g′ is
unsound.

• Witness the unsoundness by also providing a test input M ′ that satisfies g′ but not g.

• Give a condition on g,M, g′ and/or as that is sufficient to ensure that g′ is sound.

Question 3, Forward VCGen with Symbolic Execution, (50 points).
For this task, you will implement per-path verification condition (VC) generation to prove

whether a variable is possibly negative along all program paths, similar to sign analysis in previ-
ous homework.

Typical Symbolic Executors implement rules to emit verification conditions based on a pro-
gram grammar (c.f., Symbolic Execution notes). In this task, we will take a shortcut and only
consider concrete programs, instead of a full grammar. Your job is to manually instrument state-
ments to generate and collect verification conditions for Python programs, just like a real symbolic
executor would.

Example. Figure 2 shows a small function signed. We care about two variables: the input variable
x and a local variable y. We want to check that y is nonnegative along all paths, such that it is safe
for C-like array access. We introduce two symbolic variables to track the values of x and y: x0 and
y0 on Lines 1 and 2.

Some example verification constraints have been added in red. The first constraint is simply
satisfiable (Line 5). The final constraint checks whether y0 is negative is satisfiable. If the solver

3



finds a satisfying model where y0 is negative, we say that an error occurs for that path. On the
other hand, if the solver finds that y0 < 0 is UNSAT, the path is safe.

VC generation has been added for the path taken by the if statement on Line 7. For example,
Line 8 conjuncts the constraint x0 < 0 with the current_VC, corresponding to the if-condition. Line
9 further updates the current_VC to account for the assignment y=x.

0 x0 = Int(’x0’)
1 y0 = Int(’y0’)
2
3 def signed(x):
4 current VC = True
5
6 if (x < 0):
7 current VC = And(current VC, x0 < 0)
8 y = x
9 current VC = And(current VC, y0 == x0)

10 else:
11 # FIXME: add sound verification conditions to make the test pass
12 y = x
13
14 # y must be nonnegative
15 current VC = And(current VC, y0 < 0)
16
17 # Check: one path is safe, the other is unsafe.

Figure 2: Simplified signed.py

This path is SAT, implying it is unsafe since y0 < 0. However, the path on the else branch
is in fact safe (and emitting the correct constraints should result in the solver saying UNSAT).
Unfortunately, because there are no constraints generated for this path yet, we can’t tell that it’s
safe: the solver emits SAT. Your task is to implement the missing VC generation for this branch,
as well as the other programs in the homework repository, so that the signedness for y is tracked
correctly on each path (which will make the tests pass). You should add VC generation for each
statement and branch conditional. See the README.md file in the for more details.

Setup and Test. To test that your verification condition solution is correct, we need a way to ex-
ecute along all of the paths. To do that, we’re in fact going to use an existing Python Symbolic
Executor, PyExZ3.1 Follow the installation instructions for PyExZ3 in the homework repository
README.md. You can then run, for example, python3 pyexz3.py signed.py on the test pro-
grams.

Submission. Update the signed*.py files in the homework repository and commit the changes.
Note that passing the tests is a necessary, but not sufficient condition for credit: you must imple-
ment sound (and tight) verification condition generation for the example programs. Make sure that
you submit your repository to Gradescope when you are done.

1Of course, PyExZ3 is going to generate its own verification conditions internally so that it can execute all paths for
the Python programs, like the one in Figure 2. Neat huh?

4


